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Abstract 
Background: Brain atrophy and cognitive deficits persist among individuals 
with suppressed HIV disease. The impact of cannabis use is unknown. Me-
thods: HIV+ and HIV− participants underwent cross-sectional magnetic re-
sonance imaging and neuropsychological testing. Lifetime frequency, dura-
tion (years), and recency of cannabis use were self-reported. Relationships of 
cannabis use to resting-state functional connectivity (RSFC) and to 9 regional 
brain volumes were assessed with corrections for multiple comparisons. Pe-
ripheral blood cytokines and monocyte subsets were measured in the HIV+ 
group and examined in relation to cannabis exposure. Results: We evaluated 
52 HIV+ [50.8 ± 7.1 years old; 100% on antiretroviral therapy ≥ 3 months; 
83% with plasma viral load < 50 copies/mL] and 55 HIV− [54.0 ± 7.5 years 
old] individuals. Among HIV+ participants, recent cannabis use (within 12 
months) was associated with diminished RSFC, including of occipital cortex, 
controlling for age. Duration of use correlated negatively with volumes of all 
regions (most strikingly the nucleus accumbens) independently of recent use 
and intracranial volume. Recent use was associated with larger caudate and 
white matter volumes and lower soluble vascular cell adhesion molecule-1 
and monocyte chemoattractant protein-1 concentrations. Duration of use 
correlated positively with psychomotor speed. Use > 10 times/lifetime was 
linked to more somatic symptoms, better executive function, and lower 
CD14+CD16++ monocyte count. Conclusion: HIV+ individuals demonstrated 
opposing associations with cannabis. Recent use may weaken RSFC and pro-
longed consumption may exacerbate atrophy of the accumbens and other 
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brain regions. More frequent or recent cannabis use may reduce the inflam-
mation and CD14+CD16++ monocytes that facilitate HIV neuroinvasion. 
HIV-specific cannabis studies are necessary. 
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Resting-State Functional Connectivity, Occipital, Atrophy, Inflammation, 
Monocytes 

 

1. Introduction 

Rates of current and lifetime substance abuse are elevated in the HIV-positive 
(HIV+) population [1] [2]. Use of cannabis (marijuana) is particularly prevalent 
[3] [4] [5]. In the U.S., 38% of HIV+ individuals reported using cannabis 
within the past year [6]. Recreational and medical consumption overlap, with 
80% of HIV+ medicinal cannabis users also reporting recreational consump-
tion [7]. Reasons for medicinal use include the alleviation of depression and 
discomfort due to combination antiretroviral therapy (cART) [4] [8] [9] [10] 
[11]. Cannabis use for medical purposes is currently legal in 33 states [12], while 
its non-medical use has been decriminalized in 16 states and legalized in 11 
states and the District of Columbia [13]. Probable adverse effects of regular can-
nabis consumption include a dependence syndrome and impaired respiratory, 
cardiovascular and neuropsychological functioning [14]. Yet the drug’s cognitive 
consequences for HIV+ individuals remain controversial [15]. 

Acutely impairing effects of cannabis on cognition are well known [16]. Func-
tional neuroimaging has revealed the acute modulation of brain function, with 
Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) generally having op-
posing neurophysiological effects [17]. Findings on the cognitive impact of 
chronic cannabis use are mixed [14] [16] [18] but attention and memory appear 
to be compromised by long-term or heavy consumption [14] [16] [19]. In HIV, 
cannabis may have a complicated relationship to cognitive function, depending 
on the pattern of use and on HIV disease stage [15] [20]-[25].  

Although some studies of the general population found no brain structural 
differences related to chronic cannabis use [26], others have associated pro-
longed exposure with altered brain volumes [18]. Heavy cannabis mono-users 
have smaller volumes of hippocampus and amygdala [27]. HIV patients on 
cART may undergo progressive brain atrophy [28]. Thames, Kuhn et al. [21] 
reported that marijuana use and HIV infection were independently associated 
with reduced cortical volume and thickness; however, few studies have examined 
cannabis effects on brain structure in the presence of HIV. Investigations of 
brain function have also addressed cannabis use and HIV separately. THC, the 
main psychoactive component of cannabis [29], induces neurotoxic and struc-
tural changes in brain regions rich in cannabinoid CB1 receptors [30] [31] [32] 
[33]; e.g., basal ganglia, hippocampus, amygdala, and other structures involved 
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in executive functioning [34]. Altered activation in the nucleus accumbens 
(NAcc) and basal ganglia of cannabis users was detected by functional magnetic 
resonance imaging (fMRI) [18]; higher as well as lower blood oxygenation-level 
dependent (BOLD) fMRI signals were measured during task performance [35] 
[36] [37]. The NAcc, amygdala, striatum, ventral pallidum, medial prefrontal 
cortex (mPFC), orbitofrontal cortex (OFC), and anterior cingulate (ACC) form 
part of the brain’s “reward circuitry” activated in drug addiction [38] [39] [40]. 
Chronic cannabis users performing normally on cognitive tasks may exhibit 
greater, more widespread brain activation than controls [36], or decreased acti-
vation accompanied by increased, possibly compensatory activation in adjacent 
regions [18] [41] [42]. Long-term exposure has been related to reduced OFC 
volume and to increased resting-state functional connectivity (RSFC) of the OFC 
network [43]. 

The need to understand how cannabis influences brain integrity in HIV+ in-
dividuals is underscored by BOLD fMRI studies that consistently reveal 
HIV-associated frontostriatal dysfunction [44]. Both HIV and cannabis affect 
the frontostriatal system, but interact in ways not yet understood [44] [45]. HIV 
enters the central nervous system (CNS) via transmigration of infected mono-
cytes across the blood-brain barrier (BBB) [46] [47]. The viral trafficking estab-
lishes chronic neuroinflammation marked by production of pro-inflammatory 
cytokines and chemokines that contribute to neuronal dysfunction and the de-
velopment of HIV-associated neurocognitive disorder (HAND) [47] [48] [49]. 
HIV infection is accompanied by expansion of non-classical (CD14lowCD16++) 
peripheral blood monocytes [50], which secrete inflammatory cytokines [51]. 
Our study investigated associations between cannabis use and regional brain 
volumes, RSFC, and neuropsychiatric function in chronically HIV-infected indi-
viduals and an HIV-uninfected comparison group. Since HIV disease and a his-
tory of marijuana dependence have shown additive negative effects on proce-
dural learning [25], we hypothesized an adverse impact of cannabis in our HIV+ 
participants. Peripheral blood inflammatory markers and monocyte subsets were 
also investigated in relation to cannabis use in HIV. 

2. Methods 
2.1. Study Design  

We cross-sectionally evaluated HIV+ participants from the Hawaii Aging 
with HIV Cohort-Cardiovascular Disease (HAHC-CVD) study [52] and 
HIV-negative (HIV−) comparison subjects [53] who underwent brain magnetic 
resonance imaging (MRI). Inclusion criteria for the HIV+ participants required 
age ≥ 40 years; documented HIV infection; stable cART for at least 3 months 
prior to study entry; primary language of English; and ability to understand and 
provide informed consent. HIV− individuals were ≥40 years old, spoke English 
as their primary language, could provide informed consent, and were seronega-
tive on enzyme-linked immunosorbent assay (ELISA). All participants fulfilled 
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the same exclusion criteria: active psychosis; any uncontrolled major affective 
disorder; recorded loss of consciousness > 5 min; pregnancy or breastfeeding; 
factors precluding MRI (e.g., claustrophobia); and any past or present condition 
such as stroke or traumatic brain injury that was determined by the evaluating 
physician to introduce confounding factors [53].  

Information (self-reported) on consumption of cannabis and other drugs con-
sisted of duration (years) of use; lifetime frequency of use (0; 1 - 10; or >10 
times); and whether the use was ≤12 months ago. Participants were categorized 
as recent users (exposure within the past 12 months), remote users (>12 months 
ago), or never-users. We used lifetime frequency of use to define occasion-
al/frequent users (>10 times) and non-users (0 - 10 times). Alcohol use was as-
sessed by the interview version of the Alcohol Use Disorders Identification Test 
(AUDIT). Blood specimens were obtained. For HIV+ individuals, plasma HIV 
RNA and CD4 cell counts were measured [53]; nadir CD4 was self-reported; and 
cytokine and monocyte data were obtained. Each participant gave written in-
formed consent. The University of Hawaii Committee on Human Studies ap-
proved the study. 

2.2. Neuroimaging 

MRI was performed on a 3.0-Tesla Philips Medical Systems Achieva scanner 
equipped with an 8-channel head coil (InVision Imaging, Honolulu). A 
high-resolution anatomical volume was acquired with a sagittal T1-weighted 3D 
turbo field echo (T1W 3D TFE) sequence (echo time TE/repetition time TR = 
3.2 ms/6.9 ms; flip angle 8˚; slice thickness 1.2 mm with no gap; in-plane resolu-
tion 1.0 mm2; field of view 256 × 256 mm2; scan time = 10.2 min). Resting-state 
functional MRI (fMRI) echo-planar imaging (EPI) BOLD data were acquired for 
a participant subset, with subjects’ eyes closed and with whole-brain coverage 
(repetition time/echo time [TR/TE] = 1600 ms/22 ms with 262 time points; flip 
angle 70˚; 3.5 mm isotropic voxels; 37 sagittal slices with no gap; scan time = 7.5 
min). 

T1-weighted data were processed with FreeSurfer as in [54]. Resting-state 
fMRI data were processed as follows. (Unless otherwise indicated, the AFNI 
software package [55] was used; names of AFNI programs are provided in pa-
rentheses.) The first 3 data points in each fMRI time series were discarded to 
allow the magnetization to reach a steady state. Data were then corrected for 
motion (3dvolreg), slice-time differences (3dTshift), and aligned to the struc-
tural T1-weighted image. The T1-weighted image was nonlinearly registered to 
the MNI template brain (auto_warp.py). The fMRI-to-structural and structur-
al-to-template transformations were concatenated and applied to the original 
fMRI time series data in order to warp the fMRI data into template space. 
T1-weighted data were segmented into gray matter (GM), white matter (WM), 
and cerebrospinal fluid (CSF) using FSL’s fast command. The fMRI data were 
averaged over masks of the white matter and CSF (each eroded by 1 voxel), and 
the 6 realignment parameters, the average white matter, the average CSF signal, 
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and their temporal derivatives were regressed out of the data. The data were 
then temporally bandpass filtered (0.01 - 0.1 Hz) and spatially smoothed by 6 
mm (3dBandpass). Time points where the volume-to-volume motion (the 
Euclidean norm of the 6 realignment parameters) exceeded 0.2 mm were cen-
sored and not included in any of the analyses. A seed-based approach [56] eva-
luated whole-brain RSFC of regions of interest in bilateral NAcc, insula, amyg-
dala, hippocampus, ACC, caudate nucleus and putamen. Voxel-wise whole brain 
measures of functional connectivity for each seed region were estimated by av-
eraging the fMRI time series over the seed region and computing the correlation 
with all other brain voxels. The correlation coefficients were Fisher-Z trans-
formed prior to group analyses.  

2.3. Neuropsychological Testing 

Participants completed the Beck Depression Inventory-I (BDI) [57] and a neu-
ropsychological (NP) test battery that assessed cognitive domains affected by 
HIV [54]. A global NP z-score and composite, domain-specific z-scores (psy-
chomotor speed, learning/memory, executive function, working memory) were 
derived [54]. BDI component (cognitive/affective and somatic) and total scores 
were computed. 

2.4. Inflammatory Markers and Monocyte Phenotypes 

We have previously described the measurement of circulating inflammatory 
markers [53] and blood monocyte subpopulations [58]. 

2.5. Statistical Analysis 

Demographics, cannabis use variables and NP z-scores were compared be-
tween HIV+ and HIV− groups by two-tailed t-test, Mann-Whitney test, or 
Fisher’s exact test. Current and nadir CD4 counts and cytokine concentrations 
were log-transformed for normality. Univariate relationships were examined by 
Pearson correlation. Analysis of covariance controlling for intracranial volume 
(ICV) assessed differences in total volumes of the NAcc, amygdala, hippocam-
pus, caudate, putamen, thalamus, pallidum, cortical GM and cerebral WM be-
tween HIV+ and HIV− participants.  

Substance dependence may exacerbate HIV-associated brain atrophy [59]. We 
used multiple regression adjusting for ICV to examine the relationships of re-
gional volumes to duration of cannabis use and to recent vs. remote use (or life-
time use frequency) in the HIV+ and HIV− groups. Associations with recent use 
are emphasized over associations with lifetime frequency, as use within the past 
year is likely more meaningful than use >10 times/lifetime. Age, current and na-
dir CD4 count, etc. were tested as confounders. Effects of tobacco smoking, al-
cohol use and polydrug use were considered in post-hoc volume analyses. To-
bacco smoking was assessed by two binary variables: ever-smokers (current plus 
former smokers) vs. never-smokers, and current smokers vs. non-smokers (for-
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mer smokers plus never-smokers). Using the first question of the AUDIT, which 
inquired about the past year, we categorized alcohol use as frequent (>2 
times/week), occasional (up to 4 times/month), and never. Polydrug use (a bi-
nary yes/no variable) was defined as recent or remote use of one or more sub-
stances other than cannabis. For regression models, histograms of standar-
dized residuals were checked for normality, and plots inspected to ensure that 
the residuals were normally distributed around the regression line. P < 0.05 
was considered statistically significant. Associations between cannabis use and 
regional brain volumes were corrected for multiple comparisons using the 
Holm-Bonferroni criterion [60].  

RSFC group differences (i.e., for HIV+ vs. HIV− participants; recent vs. re-
mote HIV+ cannabis users; and recent vs. remote HIV− users) were assessed by 
a two-sample t-test controlling for age. Results were corrected for multiple 
comparisons using a cluster-based approach. This method runs a Monte Carlo 
simulation to determine the likelihood of false positives given the autocorrela-
tion function computed from the data [61] [62].  

Relationships of cannabis use variables to BDI and NP z-scores in HIV+ and 
HIV− individuals were also examined. Exploratory regression analyses as-
sessed cannabis use associations with peripheral blood cytokines and monocyte 
sub-populations in HIV+ participants. Comparisons of recent vs. remote users 
did not include individuals who had never used cannabis. Never-users were in-
cluded in analyses involving lifetime frequency of use. 

3. Results 
3.1. Study Participants 

The sample consisted of 52 HIV+ and 55 HIV− participants (Table 1). Plasma 
viral load (HIV RNA) was undetectable (<50 copies/mL) in 43 of the HIV+ indi-
viduals; the remaining 9 participants had median (min–max) viral load of 180 
(53 - 15,700) copies/mL. HIV+ individuals were younger than the HIV− group 
and had higher proportions of recent cannabis users and polydrug users, more 
years of cannabis use, poorer working memory, and higher BDI scores. Four 
HIV+ (3 with plasma HIV RNA < 50 copies/mL) and 11 HIV− participants had 
never used cannabis. Recent use of other illicit substances was not prevalent. 
Among HIV+ individuals, 5 were recent users of nitrates and 1 of methamphe-
tamine; 1 HIV− participant had recently used crack cocaine (all 7 used the sub-
stances > 10 times). Those who had used cannabis (i.e., recent users plus remote 
users) comprised 48 HIV+ and 44 HIV− individuals. 

Recent users reported longer duration of cannabis use than did remote users in 
both the HIV+ (Table 2) and HIV− (25 vs. 5 years, p = 0.002) groups. In HIV+ 
recent users, duration of use correlated with years of education (R = −0.43, p = 
0.04). Older age correlated with longer duration of use among remote users 
(HIV+: R = 0.45, p = 0.03; HIV−: R = 0.45, p = 0.007). Duration of use did not 
correlate with years since HIV diagnosis, years on cART, or current or nadir CD4. 
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Table 1. Characteristics of study participants. Values are presented as N (%), mean ± s.d., 
or median (Q1 - Q3). Group differences were assessed by chi-squared or Fisher’s exact 
test (for categorical variables) and t-test (continuous variables), except where noted. 

Subject characteristics HIV-positive HIV-negative p-value 

N 52 55 – 

Male 44 (85%) 40 (73%) 0.14 

Age (years) 50.8 ± 7.1 54.0 ± 7.5 0.03 

Education (years) 14.4 ± 2.3 15.2 ± 2.4 0.06 

Race    

Caucasian   28 (54%) 36 (65%) 

0.31 

African American/Black   0 (0%) 1 (2%) 

Native Hawaiian/Pacific Islander   7 (14%) 0 (0%) 

Asian   6 (11%) 6 (11%) 

More than one race   10 (19%) 12 (22%) 

Unknown   1 (2%) 0 (0%)  

Hispanic ethnicity 9 (17%) 5 (9%) 0.26 

Years since HIV diagnosis 13.3 ± 6.7 – – 

Years on combination antiretroviral therapy 11.2 ± 6.0 – – 

Nadir CD4 count (cells/mm3),  
median (Q1 - Q3) 

116.0 (34.0 - 251.5) – – 

Current CD4 count (cells/mm3)  
median (Q1 - Q3) 

460.5 (291.5 - 594.3) – – 

Undetectable plasma HIV RNA  
(<50 copies/mL) 

43 (83%) – – 

Diabetes 4 (8%) 1 (2%) 0.15 

Hypertension 13 (25%) 11 (20%) 0.54 

History of myocardial infarction 1 (2%) 0 (0%) 0.49 

Cannabis use 

Ever used   48 (92%) 44 (80%) 0.07 

Recent use   25 (52%A) 9 (21%A) 0.002 

Lifetime frequency of use (0 - 10 times)   13 (25%) 23 (42%) 
0.07 

Lifetime frequency of use (>10 times)   39 (75%) 32 (58%) 

Duration of cannabis use (years)   10.0 (5.0 - 30.0) 6.0 (1.0 - 20.0) 0.02‡ 

Tobacco smoking 

Current smokers   17 (33%) 9 (16%) 0.05 

Ever smokers   34 (65%) 34 (62%) 0.70 

Alcohol Use°   

Never   20 (39%) 14 (26%) 

0.09 Occasional   20 (39%) 20 (36%) 

Frequent   10 (20%) 21 (38%) 

https://doi.org/10.4236/jbbs.2020.108022


K. J. Kallianpur et al. 
 

 

DOI: 10.4236/jbbs.2020.108022 351 Journal of Behavioral and Brain Science 
 

Continued 

Polydrug use†    

Ever used   45 (87%) 37 (67%) 0.02 

Recent use   8 (18%)1 3 (8%)2 0.20 

Composite neuropsychological test z-scores 

Learning and memory   −0.26± 1.033 0.09 ± 0.99 0.09 

Executive function   0.15 ± 0.99 0.21 ± 1.17 0.77 

Working memory   −0.14 ± 0.78 0.29 ± 0.89 0.01 

Psychomotor speed   0.28 ± 0.62 0.27 ± 0.84 0.96 

Global   −0.07 ± 0.564 0.13 ± 0.62 0.11 

Beck Depression Inventory (BDI) scores 

Somatic subscore, median (Q1 - Q3)   4.0 (2.5 - 6.5) 2.0 (0 - 3.0)5 <0.000‡ 

Cognitive-affective subscore, median (Q1 - Q3)   5.0 (1.5 - 9.0) 1.0 (0 - 4.0)5 0.001‡ 

Total score, median (Q1 - Q 3)   10.0 (5.0 - 15.0) 4.0 (1.0 - 7.0)5 <0.000‡ 

†Use of one or more of the following: cocaine, crack, phencyclidine (PCP), heroin, crystal methampheta-
mine (ice), lysergic acid diethylamide (LSD), stimulants, painkillers, ecstasy, nitrates, sedatives, glue, keta-
mine, methadone, barbiturates. °N = 50 for HIV+ group; Arecent use (vs. remote use) is defined for the 48 
HIV+ and 44 HIV− participants who have used cannabis (excludes never-users). ‡Mann-Whitney U Test; 
1N = 45; 2N = 37; 3N = 46; 4N = 43; 5N = 42.  

 
Table 2. Characteristics of HIV+ recent and remote cannabis users. Values are presented 
as N (%), mean ± s.d., or median (Q1 - Q3). Group differences were assessed by t-test (for 
continuous variables) and chi-squared or Fisher’s test (categorical variables), except 
where noted.  

Characteristics Recent users Remote users p-value 

N 25 23 – 

Male 22 (88%) 19 (83%) 0.70 

Age (years) 49.6 ± 6.9 51.4 ± 6.3 0.35 

Education (years) 13.9 ± 2.2 14.6 ± 2.3 0.27 

Caucasian race 17 (68%) 10 (44%) 0.15 

Years since HIV diagnosis 13.1± 6.4 13.7 ± 7.4 0.79 

Years on combination antiretroviral therapy 11.0 ± 5.5 11.2 ± 6.7 0.92 

Nadir CD4 count (cells/mm3),  
median (Q1 - Q3) 

175 (10 - 250) 85.0 (50 - 245) 0.71‡ 

Current CD4 count (cells/mm3),  
median (Q1 - Q3) 

466 (281 - 641) 439 (325 - 592) 0.98‡ 

Undetectable plasma HIV RNA  
(<50 copies/mL) 

22 (88%) 18 (78%) 0.45 

Cannabis use 

Lifetime frequency of use (0 - 10 times)   1 (4%) 8 (35%) 0.01 

Lifetime frequency of use (>10 times)   24 (96%) 15 (65%) 0.01 

Duration of cannabis use (years)   25 (5 - 30) 8 (3 - 18) 0.01‡ 
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Continued 

Tobacco smoking 

Current smokers   9 (36%) 8 (35%) >0.99 

Ever smokers   19 (76%) 14 (61%) 0.35 

Alcohol use   

Never   9 (36%)1 8 (35%) 

0.95 Occasional   9 (36%)1 10 (44%) 

Frequent   5 (20%)1 5 (22%) 

Polydrug use† 23 (92%) 22 (96%) 0.60 

Neuropsychological test z-scores 

Learning and memory   −0.31± 1.002 −0.28 ± 1.093 0.92 

Executive function   0.33 ± 0.981 −0.06 ± 1.042 0.20 

Working memory   −0.10 ± 0.721 −0.22 ± 0.872 0.64 

Psychomotor speed   0.27 ± 0.652 0.24 ± 0.592 0.89 

Global   0.01 ± 0.594 −0.18 ± 0.544 0.30 

Beck Depression Inventory (BDI) scores 

Somatic subscore, median (Q1 - Q3)   6.0 (3.0 - 9.0)1 3.0 (2.0 - 6.0) 0.06‡ 

Cognitive-affective subscore, median (Q1 - Q3)   6.0 (1.0 - 9.0)1 5.0 (2.0 - 9.0) 0.48‡ 

Total score, median (Q1 - Q3)   12.0 (6.0 - 17.0)1 9.0 (5.0 - 15.0) 0.21‡ 

†Use of cannabis and at least one of the following at any time: cocaine, crack, phencyclidine (PCP), heroin, 
crystal methamphetamine (ice), lysergic acid diethylamide (LSD), stimulants, painkillers, ecstasy, nitrates, 
sedatives, glue, ketamine, methadone, barbiturates. ‡Mann-Whitney U Test; 1N = 23; 2N = 22; 3N = 21; 4N = 
20. 

3.2. Regional Brain Volumes 

Regional volumes did not differ between HIV+ and HIV− groups (p > 0.3). In 
multiple regression analyses controlling for age and ICV, lifetime frequency and 
duration of use had no effects on volumes in HIV− individuals. Among HIV+ 
participants, lifetime frequency of use related to amygdala volume (β = 0.32, p = 
0.032); duration of use was associated with volumes of NAcc (β = −0.50, p = 
0.001), amygdala (β = −0.44, p = 0.006), and caudate, hippocampus, cortical GM, 
cerebral WM (β ~ −0.35, p < 0.05). Relationships of duration of use to NAcc and 
amygdala volumes survived multiple comparison correction. 

Table 3 presents regional volume comparisons between HIV+ recent and re-
mote cannabis users, adjusted for ICV and years of cannabis use. (Inclusion of 
never-users did not alter the results.) Duration of use was inversely associated 
with all regional volumes after correction for multiple comparisons. Recent use 
was related to larger volumes of caudate, cerebral WM, pallidum, and amygdala; 
the first two associations survived Holm-Bonferroni correction. Covarying for 
ICV and duration of cannabis use, the adjusted means (SE) for HIV+ recent vs. 
HIV+ remote users were (in mm3) 516,095.5 (6709.2) vs. 479,459.0 (7016.7) for 
cerebral WM and 7574.4 (142.1) vs. 6952.6 (148.7) for the caudate nucleus. Ef-
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fect sizes (partial η2) for HIV+ recent vs. remote users were 0.23 (cerebral WM) 
and 0.16 (caudate). Results for the caudate and cerebral WM changed very little 
when analyses were restricted to the 40 HIV+ users with plasma HIV RNA < 50 
copies/mL or to the 39 HIV+ occasional/frequent users (of whom 29 were recent 
users). Regional volumes did not relate to recent use or duration of use among 
HIV− participants. 

Tobacco smoking status (current smoking, or never vs. ever having smoked) 
and alcohol use did not affect regional brain volumetric associations with can-
nabis use in the HIV+ or HIV− groups. Adjusting for recent polydrug use made 
no difference, except (in Table 3) to strengthen the effects on caudate volume of 
recent cannabis use (β = 0.44, p = 0.001) and duration of use (β = −0.55, p < 
0.00001).  

 
Table 3. Regression models showing effects of recent cannabis use (within the past 12 
months) and duration (years) of use on regional brain volumes in HIV+ participants (25 
recent users and 23 remote users). P-values that are significant after Holm-Bonferroni 
correction are shown in bold. 

Brain region Predictor variables β p R2 Adjusted R2 

Caudate nucleus 

Intracranial volume 0.39 0.002 

 Years of cannabis use −0.47 <0.001 

Recent cannabis use 0.36 0.006 

 0.44 0.40 

Pallidum 

Intracranial volume 0.24 0.064 

 Years of cannabis use −0.48 0.001 

Recent cannabis use 0.35 0.012 

 0.33 0.29 

Amygdala 

Intracranial volume 0.28 0.033 

 Years of cannabis use −0.46 0.001 

Recent cannabis use 0.31 0.027 

 0.33 0.28 

Putamen 

Intracranial volume 0.30 0.028 

 Years of cannabis use −0.38 0.011 

Recent cannabis use 0.25 0.083 

 0.27 0.22 

Nucleus accumbens 

Intracranial volume 0.25 0.044 

 Years of cannabis use −0.57 <0.0001 

Recent cannabis use 0.23 0.084 

 0.39 0.35 

Thalamus 

Intracranial volume 0.47 <0.001 

 Years of cannabis use −0.34 0.012 

Recent cannabis use 0.22 0.086 

 0.39 0.35 
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Continued 

Hippocampus 

Intracranial volume 0.33 0.012 

 Years of cannabis use −0.40 0.006 

Recent cannabis use 0.22 0.111 

 0.31 0.26 

Cortical GM 

Intracranial volume 0.67 <0.0001 

 Years of cannabis use −0.30 0.007 

Recent cannabis use 0.04 0.691 

 0.60 0.58 

Cerebral WM 

Intracranial volume 0.67 <0.0001 

 Years of cannabis use −0.37 <0.001 

Recent cannabis use 0.32 0.001 

 0.70 0.68 

GM = gray matter; WM = white matter. 

3.3. Functional Brain Connectivity 

RSFC MRI scans were available for 21 HIV+ and 36 HIV− individuals (10 recent 
and 11 remote HIV+ cannabis users; 7 recent and 29 remote HIV− users). We first 
assessed RSFC differences between HIV+ and HIV− groups, applying multiple 
comparison corrections to achieve p < 0.05. Controlling for age, HIV+ participants 
had lower RSFC between the right anterior insula and mPFC and between the left 
NAcc and mPFC (Figure 1), consistent with task-related [63] and resting-state 
[64] [65] [66] decreases in frontostriatal functional connectivity in HIV. 

Table 4 presents significant RSFC differences between recent and remote 
cannabis users for the HIV+ and HIV− groups. In HIV+ participants, recent use 
was associated with reduced RSFC (Figure 2), including that of the occipital 
cortex with the amygdala, putamen and ACC. HIV+ recent users also exhibited 
stronger caudate-precuneus and hippocampus-motor cortex RSFC, although 
these results were non-significant or did not survive multiple comparison cor-
rections. Among HIV− individuals, recent users had lower insular RSFC com-
pared with remote users; recent use was not associated with increased RSFC. 

3.4. Neuropsychiatric Function 

HIV− recent users had lower psychomotor speed than HIV− remote users 
(−0.19 ± 0.75 vs. 0.48 ± 0.78; p = 0.040). Psychomotor speed did not differ be-
tween HIV+ recent vs. remote users (0.27 ± 0.65 vs. 0.24 ± 0.58; p = 0.7). Occa-
sional/frequent use, compared to non-use, related to better executive function in 
HIV+ individuals (0.31 ± 0.97 vs. −0.33 ± 0.95; p = 0.046). In univariate analys-
es, duration of cannabis use correlated with NP z-scores for psychomotor speed 
(R = 0.34, p = 0.023) and executive function (R = 0.30, p = 0.045) in HIV+ par-
ticipants but did not relate to NP performance in controls. When recent use and 
duration of use were simultaneously included as predictors in regression models, 
neither variable had an effect on NP z-scores for HIV− individuals; in the HIV+ 
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group, duration of use remained associated with psychomotor speed (β = 0.38, p 
= 0.019) whereas recent use did not affect z-scores. 

 

 
Figure 1. Resting-state functional connectivity differences between HIV+ (N = 21) and 
HIV− (N = 36) participants, controlling for age. HIV+ individuals exhibited lower RSFC 
between (a) a seed region in the left nucleus accumbens (left panel) and medial prefrontal 
cortex (mPFC), and (b) a seed region in the right anterior insula (left panel) and mPFC. 

 

 

Figure 2. HIV+ recent cannabis users (N = 10) have lower RSFC compared to HIV+ 
remote users (N = 11) between (a) the right central amygdala (seed) and bilateral 
pre-central gyrus, left occipital cortex, central nucleus of the amygdala; (b) left nucleus 
accumbens (seed) and left pre-central gyrus; (c) left caudate head (seed) and right 
post-central gyrus, left middle temporal gyrus; (d) subgenual anterior cingulate (seed) 
and bilateral and medial occipital cortices, right post-central gyrus; (e) left putamen (seed) 
and left medial occipital cortex. Seed regions are shown on the left. 
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Table 4. Seed locations and regions showing significant RSFC differences between recent 
and remote cannabis users, for HIV+ and HIV− study participants (controlling for age). 
P-values are corrected for multiple comparisons. 

Brain region 
Peak Center-of-mass Cluster 

size 
p-value 

X Y Z X Y Z 

HIV-POSITIVE PARTICIPANTS 

Recent < remote 

R. Amygdala (Ce) seed 

L. Occipital Cortex 12 44 0 14 62 6 437 0.01 

L. Pre-central Gyrus 24 30 66 38 27 55 351 0.03 

R. Pre-central Gyrus −36 26 58 −42 24 57 287 0.05 

L. Caudate Head seed 

R. Post-central Gyrus −44 26 58 −40 22 52 377 0.02 

L. Middle Temporal Gyrus 62 38 0 61 28 −4 342 0.03 

Subgenual ACC seed 

Medial Occipital Cortex 6 80 14 19 83 14 1252 <0.01 

L. Occipital Cortex 30 68 −8 28 63 −10 924 <0.01 

R. Occipital Cortex −50 78 −12 −38 70 −9 850 <0.01 

R. Post-central Gyrus −28 26 48 −40 18 52 548 0.01 

L. Nucleus Accumbens seed 

L. Pre-central Gyrus 44 8 60 43 15 58 334 0.03 

L. Putamen seed 

Medial Occipital Cortex 18 92 2 9 93 5 299 0.05 

HIV-NEGATIVE PARTICIPANTS 

Recent < remote 

L. Amygdala (Ce) seed 

L. Middle Frontal Gyrus −42 14 42 −42 24 34 597 0.01 

L. Caudate Body seed 

L. Medial PFC −6 40 32 −4 40 38 297 0.05 

R. Caudate Body seed 

R. Medial PFC 4 70 4 4 64 6 325 0.03 

R. Caudate Head seed 

L. Post-central Gyrus −60 −20 36 −58 −24 34 463 0.01 

R. Anterior insula seed 

L. Middle Temporal Gyrus −62 −60 2 −56 −66 6 325 0.03 

L. Posterior Insula seed 

L. Superior Parietal Lobule −18 −52 68 −28 −52 62 520 0.01 
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R. Posterior Insula seed 

L. Inferior Parietal Lobule −48 −46 24 −44 −52 28 460 0.01 

L. Inferior Frontal Gyrus −42 22 −14 −40 30 −14 377 0.02 

L. Posterior Insula −32 −20 −2 −32 −16 2 357 0.02 

L. Inferior Temporal Gyrus −42 −6 −38 −46 −6 −34 304 0.04 

Subgenual ACC seed 

R. Pre-central Gyrus 54 −4 50 46 −6 50 1494 <0.01 

L. Putamen seed 

R. Inferior Parietal Lobule 30 −50 44 40 −48 44 326 0.03 

CE = central nucleus of the amygdala; ACC = anterior cingulate cortex; PFC = pre-frontal cortex. 
 

Occasional/frequent use was associated with more somatic symptoms in 
HIV+ participants (Figure 3). Median (Q1 - Q3) BDI-somatic scores were 5.0 
(3.0 - 7.0) for occasional/frequent users vs. 2.5 (1.0 - 4.75) for non-users (p = 
0.016). Cognitive/affective BDI scores did not differ between occasional/frequent 
(5.0 [2.0 - 9.0]) and non-users (5.5 [0 - 7.0]; p = 0.17), but occasional/frequent 
users showed a trend toward higher total BDI (12.0 [6.0 - 16.5] vs. 9.0 [1.0 - 
10.75]; p = 0.052). A trend association existed between higher BDI-somatic 
scores and recent vs. remote use (6.0 [3.0 - 9.0] vs. 3.0 [2.0 - 6.0]; p = 0.063). 
HIV− individuals exhibited no relationships between cannabis use and BDI. 

3.5. Circulating Monocytes and Inflammatory Markers 

Subsets of HIV+ participants had available data on plasma cytokine levels (N = 
47) and absolute counts of classical, intermediate, non-classical and total mono-
cyte populations (N = 44) (Table 5). Relative to non-users, occasional/frequent 
cannabis users had lower non-classical monocyte count (7.26 ± 0.36 vs. 7.51 ± 
0.23 cells/L, log10-transformed; p = 0.048), which also related to occasion-
al/frequent use (β = −0.33, p = 0.032) in regression analyses adjusting for age. 

Recent use (compared to remote) was associated with lower soluble vascular 
cell adhesion molecule-1 (sVCAM-1) (3.00 ± 0.10 vs. 3.08 ± 0.13 pg/mL; p = 
0.028) in plasma. Relative to non-users, occasional/frequent users showed a 
trend toward reduced sVCAM-1 (3.03 ± 0.11 vs. 3.10 ± 0.13; p = 0.073). Mono-
cyte chemoattractant protein-1 (MCP-1) levels correlated with duration of use 
(R = −0.31, p = 0.039). A trend toward lower plasma MCP-1 in recent vs. remote 
users (2.06 ± 0.17 vs. 2.16 ± 0.18 pg/mL; p = 0.072) was significant after adjust-
ment for age (p = 0.037). 

4. Discussion 

The apparently opposing cannabis associations demonstrated by our HIV+ 
study participants indicate complex effects of the drug which may be deleterious 
as well as beneficial. Recent users exhibited weaker brain RSFC and more so-
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matic symptoms. Longer duration of use (reflective of prolonged or cumulative 
exposure) correlated with smaller volumes of multiple regions including the 
NAcc, hippocampus, amygdala and cortical GM. In contrast, recent use was re-
lated to slightly larger caudate and WM volumes, lower plasma MCP-1 and 
sVCAM-1, and better executive functioning; more frequent lifetime use was as-
sociated with lower non-classical monocyte count.  
 
Table 5. Plasma concentrations of inflammatory cytokines and chemokines 
(log10-transformed) and counts of peripheral blood monocyte populations in the HIV+ 
study participants. Inflammatory marker and monocyte data were available for 47 and 44 
individuals, respectively, except where noted.  

Cytokine/chemokine Log10 Concentration (pg/mL) 

sE_selectin 1.53 ± 0.25 

sVCAM-1 3.05 ±0.12 

sICAM-1 2.16 ± 0.18 

MMP-9 1.73 ± 0.27 

MPO 1.21 ± 0.29 

tPAI-1 1.97 ± 0.18 

CRP 4.13 ± 0.66 

SAA 4.11 ± 0.72 

SAP 4.99 ± 0.39 

IL-1β −0.52 ± 0.03 

IL-6 −0.03 ± 0.45 

IL-8 0.55 ± 0.17 

IL-10 0.13 ± 0.75 

TNF-α 0.34 ± 0.41 

MCP-1 2.11 ± 0.18 

VEGF 1.30 ± 0.43 

IFN-γ −0.21 ± 0.42 

NT-proBNP 0.99 ± 0.71 

Monocyte population Log10Count (cells/L) 

CD14+CD16−, classical 8.49 ± 0.17 

CD14+CD16+, intermediate 6.83± 0.47 

CD14lowCD16++, non-classical 7.32 ± 0.35 

Total monocytes† 8.58 ± 0.18 

Plasma soluble (s)E-selectin, s-vascular cell adhesion molecule (sVCAM)-1, s-intercellular adhesion mole-
cule (sICAM)-1; matrix metalloproteinase (MMP)-9, myeloperoxidase (MPO), total plasminogen activator 
inhibitor type-1 (tPAI)-1, C-reactive protein (CRP), serum amyloid A (SAA), serum amyloid P (SAP); in-
terleukin (IL)-1β, IL-6, IL-8, IL-10; tumor necrosis factor (TNF)-α, monocyte chemoattractant protein 
(MCP)-1, vascular endothelial growth factor (VEGF), interferon (IFN)-γ, N-terminal pro-brain natriuretic 
peptide (NT-proBNP). †N = 52. 
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Figure 3. Beck Depression Inventory (BDI) somatic, BDI cognitive/affective, 
and total BDI scores for HIV+ occasional/frequent cannabis users (lifetime 
use >10 times; N = 37) and HIV+ cannabis non-users (0 - 10 times/lifetime; 
N = 12). Median values and interquartile range are shown. 

 
The absence of associations between cannabis use and regional brain volumes 

in HIV− individuals in the current study is consistent with prior findings of mi-
nimal cannabis effects, if any, on brain structure [67] [68]. However, the litera-
ture is conflicting: some non-HIV-related studies demonstrated results similar to 
those noted in our HIV+ group. Prolonged exposure was associated with puta-
tive brain atrophy, perhaps due to neurotoxicity of cannabis [43]. Users showed 
structural abnormalities in the NAcc, hippocampus, amygdala and prefrontal 
cortex [18] [69]. Chronic or heavy consumption was related to hippocampal and 
amygdalar volume reductions [18] [27] [70] [71] [72]. Moreover, addictive ef-
fects operate through increased dopamine, particularly in the NAcc [73]. As 
NAcc volumetric decrease is linked to apathy [74] and cognitive dysfunction 
[75] in chronic HIV, we find noteworthy the robust association between longer 
duration of cannabis use and reduced NAcc volume among our HIV+ partici-
pants. Identifying cumulative effects of cannabis on the accumbens may yield 
insights into the development of HIV-related mood and cognitive symptoms.  

More evidence of HIV-specific cannabis effects was revealed by RSFC. Can-
nabis use within the past year was associated with decreased RSFC in the HIV+ 
and comparison groups alike; but HIV+ recent users, unlike their HIV− coun-
terparts, demonstrated involvement of occipital cortex. HIV+ individuals exhibit 
visual processing/attention deficits [76] [77] and diminished activation in pri-
mary visual cortices during visual task [78] [79] [80] and resting [81] conditions. 
Interestingly, abnormal visual processing has distinguished HIV patients by 
HAND status [80]. Although our HIV+ participants did not show a relationship 
between cannabis use and cognitive impairment, reduced occipital RSFC in the 
HIV+ recent users suggests that further research is warranted on the contribu-
tions of cannabis to occipital cortical changes that potentially affect cognition. 
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We also observed associations between recent cannabis use and enhanced 
RSFC (caudate-precuneus and hippocampus-motor cortex) in the HIV+ group. 
These findings, while not achieving strict statistical significance, add to data in-
dicating the complexity of cannabis effects on the brain. Functional MRI has 
pointed to neuroadaptive processes that may mitigate cannabis-induced im-
pairment [18] [82]: long-term or heavy users may become tolerant to damaging 
cognitive effects [8] [18] [83] [84] [85]. In a non-HIV study, long-term users 
performed normally on cognitive control tasks but, under increasing demands, 
showed greater prefrontal-occipitoparietal functional connectivity (correlating 
with longer lifetime cannabis exposure) [82]. Duration of cannabis use has been 
directly correlated with RSFC [86]. While our volumetric results may imply a 
long-term adverse impact vs. a short-term ameliorative effect, the RSFC data il-
lustrate the complicated nature of the consequences. A simple characterization 
of long-term use as detrimental is difficult to make, and in our study is contra-
dicted by the positive relationship between duration of use and psychomotor 
speed in HIV+ participants [87].  

Cannabis possesses anti-inflammatory properties and is under investigation 
for its therapeutic value [88]. It has been linked to lower HIV viral load [20]. 
Cannabis use in our HIV+ group was associated with decreased plasma 
MCP-1 and sVCAM-1, biomarkers for inflammatory processes involved in 
trafficking of HIV+ monocytes into the brain. Monocyte migration into the 
CNS requires leukocyte recruitment and adhesion to the BBB vascular endo-
thelium, with upregulated adhesion molecules [89] [90] [91] [92]. CNS infil-
tration of HIV+ leukocytes is also mediated by MCP-1 [93]. MCP-1 eleva-
tions during neuroinflammation disrupt BBB integrity [94], and, in HIV, are 
associated with cognitive deficits [95]. Furthermore, cannabis use correlated 
with lower CD14+/lowCD16++ monocyte counts in our HIV+ participants in 
agreement with published findings [96]. Non-classical monocytes, considered 
pro-inflammatory and patrolling [97] [98], selectively transmigrate across the 
BBB and facilitate HIV neuroinvasion [99] [100]. HIV+ CD14+CD16+ mono-
cytes can differentiate into macrophages that constitute CNS viral reservoirs 
[100] [101]. In vitro THC treatment of monocytes lowers macrophage suscep-
tibility to HIV [102] and may retard monocyte processes implicated in 
HIV-related neuroinflammation [96]. We found cannabis use to be associated 
with better neurocognitive performance in our HIV+ group, reminiscent of a 
positive relationship between lifetime cannabis use and verbal fluency in another 
HIV+ sample [87]. Reduced inflammation was recently suggested to underlie a 
link between cannabis exposure and lower likelihood of neurocognitive impair-
ment in HIV [24]. Comprehensive studies are required to understand the me-
chanism of cannabis effects on HIV neuropathogenesis and to shed light on the 
interaction between cannabis consumption and HIV. The drug’s impact may 
well be disease-specific, given that cannabis use has been associated with better 
neurocognitive function in bipolar disorder but with compromised neurocogni-
tion in schizophrenia [103] [104]. 
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It is worth noting that medical marijuana may not produce the adverse neu-
rocognitive consequences often seen in recreational users. Individuals who 
sought cannabis treatment for anxiety, sleep disturbance, etc. have reported bet-
ter executive functioning after three months [105]. While cognitive performance 
may improve solely as a consequence of symptom amelioration and concomitant 
lessening of other conditions (e.g., depression), medical cannabis products may 
be inherently neuroprotective as they are usually lower in THC and higher in 
CBD [105]. In our study, the product type and purpose of use were not recorded, 
so we cannot distinguish the possible contributions of recreational and medical 
cannabis to our results. 

Other limitations of this work include the cross-sectional design which prec-
ludes causal inference. The lack of brain volumetric associations with cannabis 
use in HIV− individuals may reflect the relatively few HIV− recent users. Can-
nabis use information was self-reported; unknown variables included age of on-
set, periods of abstinence, cumulative lifetime exposure, and whether partici-
pants met Diagnostic and Statistical Manual of Mental Disorders criteria for any 
current substance use disorder or lifetime dependence diagnosis. Notoriously 
difficult to quantify, cannabis consumption presents a major challenge to re-
search [96] [105]. Given the paucity of research on cannabis-related brain dif-
ferences in HIV, our findings extend previous findings and may inform future 
work. Many prior neuroimaging studies of cannabis effects were restricted to 
dependent or heavy users and focused on the hippocampus and amygdala. In-
vestigations of polysubstance cannabis users yield more generalizable results 
than studies of mono-users [106]: our HIV+ participants typified Hawaii’s HIV 
population. Finally, to our knowledge this is the first study to examine RSFC in 
the context of both cannabis use and HIV. 

The current report provides evidence that cannabis use in suppressed HIV 
disease may exert an adverse long-term impact on the brain that competes with 
protective (possibly shorter-term) effects. Prolonged exposure may cause or ex-
acerbate brain volumetric loss. Future investigations should confirm and explore 
the consequences of the weaker RSFC observed in our recent users. An-
ti-inflammatory cannabis actions may inhibit viral CNS entry, attenuate brain 
atrophy, and perhaps elicit compensatory RSFC mechanisms. HIV-specific re-
search is needed as the drug’s effects may differ by HIV serostatus. Although the 
higher number of somatic complaints among our HIV+ frequent or recent can-
nabis users may signify self-medication, host and viral factors potentially asso-
ciated with this outcome should be investigated. Knowledge of how cannabis 
may compound or counteract the damaging consequences of HIV will likely 
have implications for cannabinoid-based interventions. Additional research is 
necessary to determine interrelationships among cannabis use, cognition, and 
brain integrity in individuals with HIV.  
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