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Abstract 
In the current paper, we develop a methodology to price lookback options for 
cryptocurrencies. We propose a discreetly monitored window average look-
back option, whose monitoring frequencies are randomly selected within the 
time to maturity, and whose monitoring price is the average asset price in a 
specified window surrounding the instant. We price these options whose un-
derlying asset is the CCI30 index of various Cryptocurrencies, as opposed to a 
single cryptocurrency, with the intention of reducing volatility, and thus, the 
option price. We employ the Normal Inverse Gaussian (NIG) and Rough Frac-
tional Stochastic Volatility (RFSV) models to the cryptocurrency market, and 
using the Black-Scholes as the benchmark model. In doing so, we intend to 
capture the extreme characteristics such as jumps and volatility roughness for 
cryptocurrency price fluctuations. Since there is no availability of a closed-form 
solution for lookback option prices under these models, we utilize the Monte 
Carlo simulation for pricing, and augment it using the antithetic method for 
variance reduction. Finally, we present the simulation results for the lookback 
options, and compare the prices resulting from using the NIG model, RFSV 
model with those from the Black-Scholes model. We find that the option price 
is indeed lower for our proposed window average lookback option, than for a 
traditional lookback option. We found the Hurst parameter to be 0.09H =  
which confirms that the cryptocurrency market is indeed rough. 

Keywords 
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1. Introduction

Lookback options are exotic options that enable the holder to buy or sell an un-
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derlying asset at any price the underlying asset took in a lookback time window 
within the time to maturity [1] [2]. For example, the payoff for a call option of 
this type is defined as the difference between the maximum asset price within 
the lookback window and the fixed strike price. For floating strike lookback call 
options, the payoff is the difference between the asset price at maturity and the 
minimum asset price within the lookback window. Lookback options belong to a 
class of path dependent options. Using these options, a trader is able to exploit 
or hedge extreme movements in the underlying asset price. Lookback options 
also help investors in reducing exposure to high volatility arising from extreme 
events, such as geopolitical developments, epidemics such as COVID-19, or nat-
ural disasters. 

Due to their flexibility in reducing exposure to market risk, lookback options 
are well-suited for application in the cryptocurrency market, whose movements 
are marked by unpredictable swings with high volatility (roughly over 40% in 
the past few years). However, the major drawback we face is that such high vola-
tility results in similarly high option prices, which is one of the main concerns 
we address in this paper by using rough fractional stochastic volatility model. 
See also similar studies by [3] and [4]. 

Our novel approach to reducing cryptocurrency option prices involves choosing 
an entire index, the CCI30 index in our case, as the underlying asset, as opposed 
to a single cryptocurrency such as Bitcoin or Ethereum. We also monitor the 
underlying asset across a few dates, similar to the method proposed in [5], in-
stead of discreetly monitoring it over the entire time period until maturity. How-
ever, the problem in this method is that it enables a trader to potentially inflate 
or deflate the closing prices on these selected dates to produce a more favourable 
outcome for him. To combat the efficacy of such actions, we propose an arith-
metic or geometric average of the underlying asset price over a time window 
centred at the discrete monitor date, as opposed to basing the option on merely 
the closing price on the monitor date. 

For pricing, we apply the Monte Carlo simulation to price lookback options 
under both a Black-Scholes, a pure jump process Normal Inverse Gaussian (NIG) 
and in the case for rough fractional stochastic volatility model. When using Black- 
Scholes, we assume that the distribution of CCI30 log returns are normally dis-
tributed. However, this assumption is unlikely considering the volatility and ex-
treme fluctuations of cryptocurrency prices. Thus, following the method pro-
posed in [6], we employ the Normal Inverse Gaussian (NIG) model, to capture 
extreme variations and jumps in the CCI30 returns. Using MATLAB as a com-
putational tool, we develop a technology to price these options and compare the 
prices of lookback options priced under the Black-Scholes model, the NIG mod-
el, rough volatility. We also compare prices between traditional lookback options, 
specifically fixed strike European lookback options, and our window-average 
options. We could further apply our scheme to lookback put and call options 
with floating strikes. 
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The remainder of the paper is structured as follows: Section 2 highlights the 
key aspects of the Monte Carlo pricing method. Section 3 discusses types of look-
back options and the methodology of incorporating averaging techniques. Sec-
tion 4 introduces the selected models that will be used to price lookback options, 
namely Black-Scholes (a benchmark model), Normal Inverse Gaussian (for jumps) 
and Rough Fractional Stochastic Volatility (for rough volatility). In Section 5, we 
discuss how model parameters are estimated from the cryptocurrency data, the 
CCI30 Index. Section 6 discusses numerical implementation results. Section 7 
concludes the paper. 

2. The Monte Carlo Pricing Method 

The Monte Carlo simulation is a versatile method for pricing exotic derivatives, 
where analytical close-formed solutions are unavailable. Suppose that you want 
to compute the expectation [ ]X  of a random variable X, with distribution F. 
The Monte Carlo basic idea is to construct N independent draws 1 2, , , NX X X�  
from the distribution of X. The Strong Law of Large Numbers guarantees that if 

1

1 ,
N

N l
l

X X
N =

= ∑
 

Then 

[ ] almost surely as .NX X N→ →∞  
From the Central Limit Theorem we have that 

[ ]( ) ( )
1

1 0,1 in distribution as ,
N

l
lX

X X N
Nσ =

− → →∞∑  
 

where Xσ  is the standard deviation of X1. It follows that, for large N, the error 

[ ] 0, .X
NX X

N
σ 

−  
 

 
 

In other words, for a large number of simulations, the Monte Carlo method 
computes the expectation accurately. One can also encapsulate methods for va-
riance reduction in Monte Carlo Method2. In this paper, we will employ the me-
thod of antithetic variates. This method works in the same way, by introducing 
negative dependence runs of the Monte Carlo simulation. For example, if 

( )0,1Z   , then so is Z− . Pricing financial derivatives by Monte Carlo in-
volves simulating a driving process. For example, for a model driven by a Brow-
nian motion, each path requires the generation of many independent normal 
random variables 1 2, , , NZ Z Z� . The use of the independent normal random 
variables 1 2, , , NZ Z Z− − −�  generates a path which is a mirror image of the orig-
inal. Thus for the price of one set of normal random variables 1 2, , , NZ Z Z� , one 
can generate two Brownian sample paths which are negatively correlated. For 

 

 

1
Xσ  may be unknown but we can always find its unbiased estimate: ( )2

1

1
1

N

N l Nl
s X X

N =
= −

− ∑ . 

2Using the fact that a portfolio of two negatively correlated asset is less risky than the risk inherent in 
each asset alone. 
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more about Monte Carlo method refer to [7]. 
The fundamental concept for pricing an European style lookback call option is 

presented below, see also [4] [8]. 
Given the number of paths (Monte-Carlo simulations) SN , number of time 

steps per path TN , and time to maturity T: Discretize the time period [ ]0,T  

into sub-intervals such that iT i t= ∆  (
T

Tt
N

∆ = , for 0,1, , Ti N= � ). 

Do the following steps SN  times: 
• Using risk-neutral asset dynamical equation for crypto index (Black Scholes 

or NIG), simulate evolution of asset price. 
• Perform random simulation of asset price movement each time step for a to-

tal of TN  time steps. 
• Compute pay-off at time to maturity. 
• Discount pay-off at maturity at risk-free interest rate. 

Average the discounted the pay-off for all SN  paths. This average is the price 
of the option. 

3. Lookback Options 

There are many types of lookback options that can be employed for risk man-
agement or capitalizing from extreme movements in the underlying asset. Let 

0 1 2, , , , TS S S S�  be the values the underlying asset takes in time instances  
0,1,2, ,t T= � . The following Table 1 depicts the payoffs for different lookback 

options: 
For example, the value of a European fixed strike lookback call option at cur-

rent time 0 is given by 

( ) ( )fix 0 00
e max ,0 e drT T rT Tc M K M K x x

∞− − = − = − ≥  ∫         (1) 

Averaging Methods 

In this paper, we explore discrete lookback options for which the asset price is  
 

Table 1. Lookback option type. 

Lookback Type Payoff 

Fixed Strike Call ( )0
TM K

+
−  

Fixed Strike Put ( )0
TK m

+
−  

Floating Strike Call ( )0
T

TS m
+

−  

Floating Strike Put ( )0
T

TM S
+

−  

Where, 0
TM  is the Maximum of { }0 1 2, , , , TS S S S� ; 0

Tm  is the Minumum of  

{ }0 1 2, , , , TS S S S� ; TS  is the Stock price at the expiry date; K is the Strike price; 0S  is 

today’s stock price; { }max ,0x x+ = . 
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not monitored daily, but rather on a fixed subset of days. We measure the im-
pact of averaging the asset price over a time period surrounding the monitoring 
points on option price. A similar approach has been explored by [5], but his ap-
proach does not account for window averaging as we propose below. We use 
arithmetic averaging to perform averaging over the window period, but other me-
thods, such as geometric or harmonic averaging can also be used. Notably, the 
harmonic mean is the smallest of the aforementioned averages: h g aA A A≤ ≤ , 
where aA  is the arithmetic mean, gA  is the geometric mean, and hA  is the 
harmonic mean. This indicates that the arithmetic mean yields a higher option 
price than other averaging techniques. 

In the above Figure 1, we have three monitor instants, 1 2,T T  and 3T , within 
the interval [ ]0,T . The window periods for averaging are 1 2,W W  and 3W , re-
spectively. The width of the windows are not constant, and neither is the spacing 
between the monitor time instants. 

If we use harmonic averaging over the window period for a lookback call op-
tion, the option price will be lower than if we were to use geometric or arithmet-
ic averaging. Similarly, these averaging methods could be used for floating strike 
options as well to reduce the option price. 

Let 1 2, , , LS S S�  be the asset price within a time window of size L. Then, the 
averages are calculated as follows: 

1i
L

i
a

S
A

L
== ∑                          (2) 

1

L
Lg i

i
A S

=

= ∏                          (3) 

1

1h
L

i
i

LA

S=

=
∑

                         (4) 

Option value in Equation (1) can now be given as 

( )fix 0e max ,0 ,rT Tc M K−  = −                    (5) 

where 

( ) ( )0 0
0 0 ,T T
T T

A M A M
M A M

⋅ ⋅
⋅ > ≤

= + 
 

and where the subscript ∙ of A represents the averaging technique,   is the in-
dicator function. 

 

 
Figure 1. Monitoring window averaging technique for lookback options. 
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4. Pricing Model 
4.1. Black-Scholes Model 

The Black-Scholes model [9] is the most widely used model for financial deriva-
tive pricing. It states that the log return of a stock (or any underlying asset) can 
be specified as follows: 

2
2

0log log ,
2TS S T Tσµ σ

  
− −  

   
                 (6) 

where ( ),µ σ  is a random normal value with mean µ  and variance σ , µ  
is the expected mean of the daily returns, and σ  is the standard deviation of 
the daily returns. The above Equation (6) can additionally be written as fol-
lows: 

2
2

0

log ,
2

TS T T
S

σµ σ
    

−    
     

                   (7) 

In order to derive a dynamical model of the underlying asset for the Monte 
Carlo simulation, we use the following risk-neutral representation of the evolu-
tion of asset price: 

2

0 exp
2t tS S r t Bσ σ

  
= − ∆ +     

                  (8) 

where r is the annual risk-free rate of return and tB  is the the Wiener process. 
From Equation (8), a discretized asset dynamical equation for generating Monte- 

Carlo simulation paths can be expressed as follows 
2

exp
2t t tS S r t tσ σ ε+∆

  
= − ∆ + ∆     

               (9) 

Given that tB tε∆ = ∆  and ( )0,1ε   . In Equation (9) 
• t∆  is the time interval per time step 
• t tS +∆  is the stock price at the next time step 
• tS  is the stock price at the current time step 
• r is the risk-free rate of return 
• σ  is the annual volatility 
• ε  is the standard normal random variable 

As shown in Equation (9), generating the asset evolution over time only re-
quires one parameter to be estimated from the crypto-index logarithm of the re-
turn time series: σ . The other parameters are user-entered; for our purposes, 
they are treated as constants and specified in advance. 

To generate a vector of paths for each time step, we use the vectorized version of 
the above equation, which in MATLAB vector notation can be expressed as follows: 

( ) ( )
2

exp
2

t t t r t tσ σ ε
  

+ ∆ = − ∆ + ∆     
S S             (10) 

In this case, for each time step, a vector of random normal variables is gener-
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ated for all SN  paths. ( )t t+ ∆S  and ( )tS  are vectors of stock prices, and ε  
is a random value of size 1SN × . 

For each time step, the vectorized Monte Carlo simulation is run as follows: 
1) Generate SN  randomized asset prices for the current time step using Eq-

uation (9); repeat TN  times 
2) Once time to maturity T is reached, calculate payoffs for each trajectory, for 

SN  trajectories 
3) Discount payoffs to the present day for each trajectory; average discounted 

payoffs to compute option price 
In addition, for our Antithetic Monte Carlo simulation, the vector equations 

are modified 

( ) ( )
2

exp
2

t t t r t tσ σ ε+ +   
+ ∆ = − ∆ + ∆     

S S            (11) 

( ) ( )
2

exp
2

t t t r t tσ σ ε− −   
+ ∆ = − ∆ − ∆     

S S            (12) 

The evolutions of both S +  and S −  are used for pay-off computation at 
maturity to improve Monte Carlo convergence. 

4.2. Normal Inverse Gaussian (NIG) Model 

The Normal Inverse Gaussian process is a four-parameter distribution that cap-
tures skewness and kurtosis better than the Normal distribution. It was intro-
duced to financial application by As the cryptocurrency market returns are 
highly volatile and characterized by extreme events, we propose to apply the 
NIG distribution to model the log returns (see also [8]). If X is a random num-
ber generated from the NIG distribution, it can be represented as 

( ), , ,X α β µ δ  
where 
• α  is the tail parameter, controlling tail behavior (large values of α  implies 

light tails and small values of α  indicate heavier tails) 
• β  is the skewness parameter (a negative β  implies left-skewedness and a 

positive β  implies right-skewedness); 
• µ  is the location parameter; 
• δ  is the scale parameter (determines the spread of returns). 

The asset dynamical equation used in the Monte Carlo simulation for the NIG 
model is: 

( )NIGexpt t t tS S m t t Xω+∆ ∆= ∆ + ∆ +                 (13) 

where m is the martingale-correcting term, given by 

m r d= −  
where r is the risk-free interest rate and d is the dividend rate, ω  is given by: 

( )( )22 2 21ω δ α β α β= − + − −
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and where 
( )NIG , , ,tX α β µ δ∆   

To generate the asset evolution over time, four parameters, [ ], , ,α β µ δ , need 
to be estimated from the log return time series. 

For fast simulations, we use the vector form of the above equation, given by: 

( )NIGexpt t t tm t tω+∆ ∆= ∆ + ∆ +S S X                 (14) 

where ( )t t+ ∆S  and ( )tS  are vectors of stock prices, and NIG
t∆X  is the vec-

tor of NIG random values of size 1SN × . 

4.3. Rough Fractional Stochastic Volatility (RFSV) Model 

The dynamics of the Rough Fractional Stochastic Volatility (RFSV) model is 
given by: 

{ }
( )

d d d
exp

d d d

t t t t t t

t t

H
t t t

S r S t S W
X

X X m t W

σ

σ

α ν

= +

=

= − − +

                  (15) 

where m∈ , and ν  and α  are positive parameters, with a classical Brow-
nian motion W and a fraction Brownian motion (fBM) HW 3. Here we assume 
that the two driving processes are uncorrelated. ( )0,1H ∈  is the Hurst para-
meter that characterize the increment of the driving process. In particular, when  

1
2

H = , fractional Brownian motion boils down to just Brownian motion. 
• If 1 2H > , increments are positively correlated. 
• If 1 2H < , increments are negatively correlated and the measured smooth-

ness of the volatility. 
While standard Brownian motion has independent increments, fBM displays 

auto-correlation, i.e., it does not exhibit independent increments. The cova-
riance between an fBM process at times t and s is 

( )2 2 21 .
2

H H HH H
t sW W t s t s  = + − −               (16) 

This covariance implies an auto-correlation function that decays slower at 
1
2

H ≠ . The auto-correlation function has the slowest decay when 1 1
2

H< < .  

This implies that an fBM process will exhibit longer memory as H gets closer to 
1. This gave rise to the model of [10] using fBM to model volatility as a long  

memory process, hence their restriction of 
1 ,1
2

H  ∈ 
 

. Recently, however, [11] 

argues that volatility exhibits shorter memory, hence their restriction of  

 

 

3A fractional Brownian motion ( )H
t t

W
∈

 is a centred self-similar Gaussian process with stationary 

increments such that for all t∈ ,  

,
qH H qH

t t qW W K+∆
 − = ∆ 

 
where 0∆ ≥  is a small time interval, qK  is the moment of order 0q >  of the absolute value of 

a standard Gaussian random variable and ( )0,1H ∈  is the Hurst parameter which defines the fBM. 
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10,
2

H  ∈ 
 

. [3] showed that the Hurst paremeter estimated from realised vola-

tility of Bitcoin is closer to zero. 
To simulate the model in Equation (15), we need to be able to simulate the frac-

tional Brownian motion. In particular, considering the method which completely 
capture the covariance structure of fBM, as opposed to approximate methods which 
aim to reduce computation times by approximating the covariance structure. 

In this paper we use Hosking Method introduced by Hosking [12] to simulate 
the sample paths of the fBM. This method is concerned with simulating frac-
tional Gaussian noise (fGn). A sample fBM path can then be recovered by using 
a cumulative sum on the generated fGn sequence. The sequence ( )n n

X
∈

 of 
fractional Gaussian noise is computed recursively by computing the conditional 
distribution of 1nX +  given 0, ,nX X� . The required sample is found by gene-
rating a standard normal random variable 0X  and calculating the remaining 

1nX +  recursively. The conditional distribution is itself Gaussian with mean 

( ) ( ) 1

1

0

,

n

n

X

c n n
X
X

µ −

 
 

′  = Σ
 
 
 

�
                    (17) 

and variance 

( ) ( ) ( )12 1 ,n c n n c nσ −′= − Σ                    (18) 

where ( )c n  is an ( )1n + -column vector with elements ( ) ( ), 1kc n m m kσ= + + , 
for 0, ,k n= � . The algorithm presented by Hosking computes ( ) ( )1n c n−Σ  
recursively to ensure greater efficiency. 

5. Model Parameter Estimation 

We employ Crypto Currency Index 30 (CCI30) daily data4 covering the period 
from 2015/01/01-2021/03/17. These crypto currency trade 365 days in a year and 
in total we have 2268 data point in our sample. Figure 2 shows the index prices as 
well the the return series. In Figure 3, we show 10-day realised volatility of the in-
dex5. A sharp increase in the index price is seen during the COVID-19 pandemic. 

5.1. Black-Scholes Model Parameter 

In order to generate asset paths based on the Black-Scholes model, we need the 
volatility parameter from the log returns, which are estimated as: 

 

 

4This data is freely available online: https://www.cci30.com. 
5The formula of Realised volatility is the square root of realized variance (RV). We first compute the 
return. 

1

log ,t
t

t

Pr
P−

=
 

then 
1

2

10

RV
t

t i
i t

r
−

= −

= ∑  
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Figure 2. CCI30 index prices and returns. (a) Index price trajectory; (b) Index return. 
 

 
Figure 3. 10-days realised volatility of crypto currency index 30. 

 

1

log t
t

t

P
r

P−

 
=  

 
                        (19) 

where tP  is the closing price of the CCI30 index on day t, and 1tP−  is the 
closing price of CCI30 on day 1t − . After computing the log return time series, 
we estimate the variance. 

For our purposes, we used price data from 1/1/2015 to 1/19/2020 to compute 
the return series and its variance, see also [13] [14] [15]. 

The annual volatility parameter σ  that is needed for the Black-Scholes asset 
dynamical model is computed as: 
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2ˆ 365,σ σ= ×  
where 2σ̂  is the variance estimated from the return series. 

In our case, the number of trading days in a year is 365 days for the annual-
ized volatility calculation, as cryptocurrency markets do not close any day of the 
year, as opposed to the stock market, for example. Table 2 shows the estemates 
for Black-Scholes model parematers. 

5.2. NIG Model Parameter 

In order to generate asset paths based on the NIG model, we need to estimate 
four parameters, [ ], , ,α β µ δ , from the CCI30 log returns. The log returns for 
the CCI30 index are computed exactly in the same way as in Equation (18). 

After computing the log return time series, we estimate its mean, variance, 
skewness and kurtosis. 

These four parameters are then used as input to the function from the MATLAB 
built-in NIG toolbox function which then returns the parameters [ ], , ,α β µ δ . 
The estimates for these parameters are given in Table 3. 

5.3. RFSV Model Parameter 

Recall that fBM is a Gaussian process with the property that 

.
qH H qH

t t qW W K+∆
 − = ∆  


 

verify that the empirical distributions of log-volatility are approximately Gaus-
sian for various time lags. 

Thus, to estimate the smoothness of the volatility process, that is, H, [11] use  
 

Table 2. Black-Scholes parameter estimates. 

Data used CCI30 Index Data 

Estimated Daily Variance of the Returns 0.00031876 

Estimated Annualized Volatility σ 0.341094787 

 
Table 3. NIG parameter estimates. 

Data Used 
CCI30 Index Data 

2015/01/01-2021/03/17 

Estimated Mean 8.2777e−04 

Estimated Variance 3.1876e−04 

Estimated Skewness −0.6168 

Estimated Kurtosis 7.7435 

α  48.5890 

β  −8.4068 

µ  0.0034 

δ  0.0148 
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the following approach. Suppose that we have access to N discrete observations 
of the volatility process kσ  on [ ]0,T . Calculate 

( ) ( ) ( )
1

1, log log ,
N q

k k
k

m q
N

σ σ
−∆

+∆
=

∆ = −
− ∆ ∑  

where ∆∈  is the lag. 
Now, assuming that the log-volatility process has stationary increments, then 
( ),m q ∆  can be seen as an estimate of 

( ) ( )0log log .
q qH

qKσ σ∆
 − = ∆  


 

Taking logs, we get 

( ) ( )0log log log log log .
q

qK qHσ σ∆
 − = + ∆  


 

We can then compute ( ),m q ∆  for different values of ∆  for each q and re-
gress ( )log ,m q ∆  against log∆ . The slope of each line of best fit is then an es-
timate of qH and the intercept of the best fit is ν . 

We then make use of 10-day realised volatility to estimate H and ν  as in 
[11]. Having estimated these two parameters from 10-day realised volatility, we 
are left with three other RFSV model parameters to be specified, that is 0 ,X α  
and m. To get these model parameters, we use Black-Scholes call prices for 
Lookback option and calibrate RFSV model to these prices. We set up our objec-
tive function that we minimise to infer the remaining RFSV model parameters. 

We define calibration error based on the relative mean squared error (RMSE) 
of the objective function for parameter calibration as follows: 

( )( )2model BS

1

1 NO

j j
jO

P P
N =

Θ −∑                    (19) 

where ON  is the number of options used in the calibration, Θ  is the model 
parameter set, ( )model

jP Θ  is the jth theoretical model price dependent on Θ , 
BS
jP  is the jth Black-Scholes option price. Calibration results are given in Table 4. 

6. Numerical Results 

In this section we discuss numerical implementation results. In Tables 5-7, we 
show discretely monitoring lookback option prices consider all time steps for all 
three models. Option prices across various strikes are almost close to each others 
for all models. We also report the standard errors from the Monte Carlo and the  

 
Table 4. RFSV paremeter estimates. 

Data CCI30 Index Data 

H 0.09680965 

ν 0.6769317 

X0 −6.0756466 

α 0.6324242 

m 4.8384688 
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confident interval. Table 8 shows option prices using selected time spacing in-
terval. In all models, we see that the larger the time spacing, the smaller the op-
tion prices. In Table 9 we show lookback options for all models using arithem-
tic, geometric and harmonic averaging methods with varying window size. 
Harmonic averaging method has a slighly low prices as compared to other me-
thods. Figure 4 shows prices under each model when time spacing for window 
size increase. Rough volatility model has lower price compare to the other mod-
els. This agrees with finding by [16] that rough volatility model prices are lower 
in general. Figure 5 shows implied volatility for all three models. We find that 
BS lies in-between NIG and RFSV. 

6.1. Discrete Monitoring Across all Timesteps 

In this section, we provide numerical results for lookback options under discrete 
monitoring cross all available time-steps for all models. 

 
Table 5. Black-Scholes Lookback option prices. (a) Plain Monte Carlo method; (b) Anti-
thetic Monte Carlo method. 

(a) 

03360, 3360, 0.341094787, 0.0184, 0,K S r dσ= = = = = 1, 365, 1 365.TT N T= = ∆ =  
K SN  Price Conf. Int. Std. err. 

K 5000 998.2913 (971.7518, 1.0248e+03) 13.5406 

2 - 5 10,000 976.9586 (958.5350, 995.3821) 9.3998 

2 - 5 25,000 995.1205 (983.3538, 1.0069e+03) 6.0034 

2 - 5 50,000 988.3008 (980.0068, 996.5947) 4.2316 

2 - 5 75,000 994.7615 (987.9766, 1.0015e+03) 3.4617 

2 - 5 100,000 990.1824 (984.3429, 996.0219) 2.9793 

2 - 5 200,000 994.3654 (990.2129, 998.5179) 2.1186 

K + 400 5000 675.2659 (650.4159, 700.1159) 12.6786 

2 - 5 10,000 669.0736 (651.3198, 686.8274) 9.0581 

2 - 5 25,000 667.6439 (656.6340, 678.6538) 5.6173 

2 - 5 50,000 669.7954 (661.9832, 677.6076) 3.9858 

2 - 5 75,000 671.8285 (665.4109, 678.2462) 3.2743 

2 - 5 100,000 675.0436 (669.4726, 680.6146) 2.8424 

2 - 5 200,000 667.5709 (663.6739, 671.4680) 1.9883 

K - 400 5000 1.38E+03 (1.3520e+03, 1.4037e+03) 13.1799 

2 - 5 10,000 1.39E+03 (1.3669e+03, 1.4043e+03) 9.545 

2 - 5 25,000 1.38E+03 (1.3696e+03, 1.3932e+03) 6.0124 

2 - 5 50,000 1.39E+03 (1.3793e+03, 1.3962e+03) 4.3026 

2 - 5 75,000 1.39E+03 (1.3844e+03, 1.3980e+03) 3.4816 

2 - 5 100,000 1.39E+03 (1.3796e+03, 1.3914e+03) 3.007 

2 - 5 200,000 1.39E+03 (1.3844e+03, 1.3928e+03) 2.1372 
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(b) 

03360, 3360, 0.341094787, 0.0184, 0,K S r dσ= = = = = 1, 365, 1 365.TT N T= = ∆ =  

K SN  Price Conf. Int. Std. err. 

K 5000 998.0376 (985.5269, 1.0105e+03) 6.383 

2 - 5 10,000 994.9764 (986.1585, 1.0038e+03) 4.499 

2 - 5 25,000 994.4895 (988.9296, 1.0000e+03) 2.8366 

2 - 5 50,000 995.7641 (991.8576, 999.6706) 1.9931 

2 - 5 75,000 993.3542 (990.1845, 996.5238) 1.6172 

2 - 5 100,000 992.147 (989.3892, 994.9047) 1.407 

2 - 5 200,000 992.6615 (990.7156, 994.6075) 0.9928 

K + 400 5000 657.662 (645.1075, 670.2165) 6.4054 

2 - 5 10,000 680.0096 (670.7768, 689.2423) 4.7106 

2 - 5 25,000 667.7737 (662.0283, 673.5191) 2.9313 

2 - 5 50,000 670.159 (666.1121, 674.2059) 2.0647 

2 - 5 75,000 672.803 (669.4649, 676.1410) 1.7031 

2 - 5 100,000 669.1113 (666.2550, 671.9677) 1.4573 

2 - 5 200,000 670.6045 (668.5737, 672.6353) 1.0361 

K - 400 5000 1.38E+03 (1.3558e+03, 1.3792e+03) 5.9628 

2 - 5 10,000 1.38E+03 (1.3719e+03, 1.3895e+03) 4.4902 

2 - 5 25,000 1.39E+03 (1.3843e+03, 1.3955e+03) 2.8505 

2 - 5 50,000 1.39E+03 (1.3816e+03, 1.3895e+03) 1.9974 

2 - 5 75,000 1.39E+03 (1.3848e+03, 1.3912e+03) 1.6369 

2 - 5 100,000 1.39E+03 (1.3839e+03, 1.3894e+03) 1.4061 

2 - 5 200,000 1.39E+03 (1.3842e+03, 1.3881e+03) 0.997 
 

Table 6. NIG Lookback option prices. (a) Plain Monte Carlo method; (b) Antithetic 
Monte Carlo method. 

(a) 

03360, 3360, 0.341094787, 0.0184, 0,K S r dσ= = = = = 1, 365, 1 365.TT N T= = ∆ =  

K SN  Price Conf. Int. Std. err. 

K 5000 970.2285 (944.8811, 995.5759) 12.9324 

2 - 5 10,000 990.9745 (972.6165, 1.0093e+03) 9.3663 

2 - 5 25,000 980.8522 (969.1671, 992.5373) 5.9618 

2 - 5 50,000 978.9915 (970.8360, 987.1471) 4.161 

2 - 5 75,000 975.6676 (968.9639, 982.3713) 3.4203 

2 - 5 100,000 980.7701 (974.9770, 986.5631) 2.9556 

2 - 5 200,000 985.1512 (981.0384, 989.2640) 2.0984 

https://doi.org/10.4236/jmf.2021.114033


M. Alfeus, S. Kannan 
 

 

DOI: 10.4236/jmf.2021.114033 611 Journal of Mathematical Finance 
 

Continued 

K + 400 5000 653.1975 (629.2226, 677.1724) 12.2321 

2 - 5 10,000 652.629 (635.6384, 669.6195) 8.6686 

2 - 5 25,000 659.7408 (648.9283, 670.5533) 5.5166 

2 - 5 50,000 655.4262 (647.7945, 663.0579) 3.8937 

2 - 5 75,000 653.7019 (647.4428, 659.9609) 3.1934 

2 - 5 100,000 659.4437 (654.0406, 664.8468) 2.7567 

2 - 5 200,000 659.586 (655.7578, 663.4141) 1.9532 

K - 400 5000 1.35E+03 (1.3197e+03, 1.3714e+03) 13.1936 

2 - 5 10,000 1.37E+03 (1.3486e+03, 1.3852e+03) 9.3426 

2 - 5 25,000 1.37E+03 (1.3579e+03, 1.3810e+03) 5.8911 

2 - 5 50,000 1.37E+03 (1.3659e+03, 1.3823e+03) 4.1744 

2 - 5 75,000 1.37E+03 (1.3605e+03, 1.3738e+03) 3.3959 

2 - 5 100,000 1.38E+03 (1.3693e+03, 1.3810e+03) 2.9787 

2 - 5 200,000 1.37E+03 (1.3658e+03, 1.3740e+03) 2.0776 

(b) 

03360, 3360, 0.341094787, 0.0184, 0,K S r dσ= = = = = 1, 365, 1 365.TT N T= = ∆ =  
K SN  Price Conf. Interval Std. err. 

K 5000 886.6227 8.63E+02 910.6811 12.2749 

2 - 6 10,000 925.2854 9.08E+02 942.947 9.0112 

2 - 6 25,000 913.9389 9.03E+02 924.9235 5.6045 

2 - 6 50,000 912.8579 9.05E+02 920.6758 3.9888 

2 - 6 75,000 912.5389 9.06E+02 918.9013 3.2462 

2 - 6 100,000 911.8373 9.06E+02 917.3497 2.8125 

2 - 6 200,000 914.5893 9.11E+02 918.5098 2.0003 

K + 400 5000 611.3465 5.87E+02 635.2679 12.205 

2 - 6 10,000 588.274 5.72E+02 604.5868 8.323 

2 - 6 25,000 589.1346 5.79E+02 599.7298 5.4058 

2 - 6 50,000 592.1887 5.85E+02 599.615 3.789 

2 - 6 75,000 593.5769 5.88E+02 599.6228 3.0847 

2 - 6 100,000 586.6558 5.81E+02 591.8368 2.6434 

2 - 6 200,000 587.6651 5.84E+02 591.3516 1.8809 

K - 400 5000 1.31E+03 1.29E+03 1337.286 12.51408 

2 - 6 10,000 1.32E+03 1.30E+03 1336.69 9.000122 

2 - 6 25,000 1.32E+03 1.30E+03 1326.795 5.688888 

2 - 6 50,000 1.31E+03 1.30E+03 1320.227 4.006465 

2 - 6 75,000 1.31E+03 1.30E+03 1307.883 1.030458 

2 - 6 100,000 1.30E+03 1.30E+03 1308.891 2.814773 

2 - 6 200,000 1.31E+03 1.30E+03 1310.162 1.991127 
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Table 7. RFSV Lookback option prices. (a) Plain Monte Carlo method; (b) Antithetic 
Monte Carlo method. 

(a) 

03360, 3360, 0.0184, 0, 1, 365, 1 365TK S r d T N T= = = = = = ∆ =  

K n_sims Price Conf. Interval Std. err. 

K 5000 886.6227 8.63E+02 910.6811 12.2749 

2 - 6 10,000 925.2854 9.08E+02 942.947 9.0112 

2 - 6 25,000 913.9389 9.03E+02 924.9235 5.6045 

2 - 6 50,000 912.8579 9.05E+02 920.6758 3.9888 

2 - 6 75,000 912.5389 9.06E+02 918.9013 3.2462 

2 - 6 100,000 911.8373 9.06E+02 917.3497 2.8125 

2 - 6 200,000 914.5893 9.11E+02 918.5098 2.0003 

K + 400 5000 611.3465 5.87E+02 635.2679 12.205 

2 - 6 10,000 588.274 5.72E+02 604.5868 8.323 

2 - 6 25,000 589.1346 5.79E+02 599.7298 5.4058 

2 - 6 50,000 592.1887 5.85E+02 599.615 3.789 

2 - 6 75,000 593.5769 5.88E+02 599.6228 3.0847 

2 - 6 100,000 586.6558 5.81E+02 591.8368 2.6434 

2 - 6 200,000 587.6651 5.84E+02 591.3516 1.8809 

K - 400 5000 1.31E+03 1.29E+03 1337.286 12.51408 

2 - 6 10,000 1.32E+03 1.30E+03 1336.69 9.000122 

2 - 6 25,000 1.32E+03 1.30E+03 1326.795 5.688888 

2 - 6 50,000 1.31E+03 1.30E+03 1320.227 4.006465 

2 - 6 75,000 1.31E+03 1.30E+03 1307.883 1.030458 

2 - 6 100,000 1.30E+03 1.30E+03 1308.891 2.814773 

2 - 6 200,000 1.31E+03 1.30E+03 1310.162 1.991127 

(b) 

03360, 3360, 0.0184, 0, 1, 365, 1 365TK S r d T N T= = = = = = ∆ =  

K n_sims Price Conf. Interval Std. err. 

K 5000 899.3813 8.77E+02 922.1173 11.60019 

2 - 6 10,000 906.6053 8.90E+02 922.7656 8.245209 

2 - 6 25,000 921.661 9.11E+02 931.9579 5.253646 

2 - 6 50,000 916.8835 9.10E+02 924.2061 3.736083 

2 - 6 75,000 913.4856 9.12E+02 915.3689 0.960917 

2 - 6 100,000 914.6806 9.10E+02 919.7978 2.610904 

2 - 6 200,000 915.2851 9.12E+02 918.9344 1.861899 
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K + 400 5000 585.2188 5.64E+02 606.4044 10.80917 

2 - 6 10,000 595.1395 5.80E+02 610.3982 7.785203 

2 - 6 25,000 582.5759 5.73E+02 591.9848 4.800591 

2 - 6 50,000 587.2631 5.80E+02 594.0397 3.457522 

2 - 6 75,000 587.1273 5.85E+02 588.8744 0.891384 

2 - 6 100,000 586.4552 5.82E+02 591.2551 2.449021 

2 - 6 200,000 587.7724 5.84E+02 591.1517 1.724182 

K - 400 5000 1.31E+03 1.29E+03 1331.264 11.69479 

2 - 6 10,000 1.31E+03 1.29E+03 1321.656 8.335837 

2 - 6 25,000 1.30E+03 1.29E+03 1306.142 5.16787 

2 - 6 50,000 1.31E+03 1.30E+03 1317.61 3.679613 

2 - 6 75,000 1.31E+03 1.31E+03 1308.819 0.959331 

2 - 6 100,000 1.31E+03 1.31E+03 1317.377 2.614879 

2 - 6 200,000 1.31E+03 1.30E+03 1309.342 1.849169 

6.2. Discrete Monitoring at Select Timesteps 

In this section, we provide numerical results for lookback options under discrete 
monitoring cross selected time-steps for all models. 

 
Table 8. Discrete Monitoring at Select Timesteps. (a) Black-Scholes Monte Carlo method; 
(b) NIG Monte Carlo method; (c) RFSV Monte Carlo method. 

(a) 

Black-Scholes, Monte Carlo, Select Lookback 

03360, 3360, 0.341094787, 0.0184, 0,K S r dσ= = = = =

1, 365, 1 365, 200000.T ST N T N= = ∆ = =  
Time spacing Price Conf. Int. Std. err. 

2 975.2753 (971.1268, 979.4239) 2.1166 

4 949.2379 (945.1350, 953.3408) 2.0933 

8 913.0706 (909.0347, 917.1065) 2.0591 

16 851.2595 (847.3369, 855.1822) 2.0013 

32 797.4233 (793.5181, 801.3284) 1.9924 

64 670.5543 (666.9763, 674.1323) 1.8255 

128 487.4709 (484.4563, 490.4855) 1.5380 

(b) 

NIG, Monte Carlo, Select Lookback 

03360, 3360, 0.341094787, 0.0184, 0,K S r dσ= = = = =

1, 365, 1 365, 200000.T ST N T N= = ∆ = =  
Time spacing Price Conf. Int. Std. err. 

2 961.7085 (957.6590, 965.7581) 2.0661 

4 941.3428 (937.3062, 945.3794) 2.0595 
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8 904.0297 (900.0488, 908.0106) 2.0311 

16 848.1487 (844.2580, 852.0394) 1.9851 

32 789.6055 (785.7746, 793.4363) 1.9545 

64 669.8045 (666.2709, 673.3380) 1.8028 

128 487.4158 (484.4307, 490.4009) 1.5230 

(c) 

RFSV, Monte Carlo, Select Lookback 

03360, 3360, 0.0184, 0, 1, 365TK S r d T N= = = = = = 1 365, 200000ST N∆ = =  
Time spacing Price Conf. Interval Std. err. 

2 889.1664 8.85E+02 885.2972 1.974117 

4 852.3813 8.49E+02 848.6277 1.915152 

8 815.5984 8.12E+02 811.8838 1.895237 

16 748.3125 7.45E+02 744.7381 1.823721 

32 679.5642 6.76E+02 676.1069 1.763959 

64 596.6038 5.93E+02 593.2186 1.727171 

128 514.3752 5.11E+02 510.9588 1.743109 

6.3. Discrete Monitoring Spaced with Window Averaging 

In this section, we provide numerical results for lookback options under discrete 
monitoring with window averaging all models. 

 
Table 9. Discrete Monitored Spaced Lookback with Window Averaging. (a) BS Monte 
Carlo method; (b) RFSV Monte Carlo method; (c) NIG Monte Carlo method 

(a) 

03360, 3360, 0.341094787, 0.0184, 0,K S r dσ= = = = =

1, 365, 1 365, 64T sT N T t= = ∆ = =  
Type of average Window size Price Conf. Int. Std. err. 

Arithmetic 3 669.8311 (666.2552, 673.4070) 1.8245 

2 - 5 7 666.3056 (662.7379, 669.8732) 1.8202 

2 - 5 11 662.8696 (659.3099, 666.4293) 1.8162 

2 - 5 15 659.4212 (655.8698, 662.9726) 1.8119 

2 - 5 19 655.9681 (652.4248, 659.5114) 1.8078 

2 - 5 23 652.4952 (648.9600, 656.0303) 1.8037 

2 - 5 27 648.9935 (645.4667, 652.5203) 1.7994 

Geometric 3 669.6145 (666.0390, 673.1899) 1.8242 

2 - 5 7 665.7521 (662.1857, 669.3185) 1.8196 

2 - 5 11 661.9958 (658.4381, 665.5534) 1.8151 

2 - 5 15 658.2341 (654.6854, 661.7827) 1.8105 
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2 - 5 19 654.4743 (650.9345, 658.0141) 1.806 

2 - 5 23 650.7023 (647.1714, 654.2332) 1.8015 

2 - 5 27 646.9045 (643.3827, 650.4263) 1.7968 

Harmonic 3 669.3981 (665.8232, 672.9731) 1.824 

2 - 5 7 665.1995 (661.6344, 668.7646) 1.8189 

2 - 5 11 661.124 (657.5683, 664.6796) 1.8141 

2 - 5 15 657.0509 (653.5050, 660.5969) 1.8091 

2 - 5 19 652.9859 (649.4496, 656.5222) 1.8042 

2 - 5 23 648.9176 (645.3909, 652.4443) 1.7993 

2 - 5 27 644.826 (641.3092, 648.3428) 1.7943 

(b) 

03360, 3360, 0.0184, 0, 1, 365TK S r d T N= = = = = = 1 365, 64, 200000s ST t g N∆ = = =  

Type of average Window size Price Conf. Interval Std. err. 

Arithmetic 3 648.4583 6.45E+02 651.4864 1.544945 

2 - 6 7 643.2611 6.40E+02 646.2924 1.546594 

2 - 6 11 634.9341 6.32E+02 637.9351 1.531155 

2 - 6 15 630.7994 6.28E+02 633.7861 1.523872 

2 - 6 19 623.211 6.20E+02 626.1853 1.517493 

2 - 6 23 615.8949 6.13E+02 618.8472 1.50631 

2 - 6 27 613.4767 6.11E+02 616.4263 1.504944 

Geometric 3 648.1292 6.45E+02 651.1597 1.546186 

2 - 6 7 638.8497 6.36E+02 641.8624 1.537124 

2 - 6 11 628.8507 6.26E+02 631.8201 1.515 

2 - 6 15 625.2751 6.22E+02 628.2321 1.508701 

2 - 6 19 618.659 6.16E+02 621.6024 1.501771 

2 - 6 23 614.2924 6.11E+02 617.2271 1.497294 

2 - 6 27 607.1037 6.04E+02 610.0387 1.497472 

Harmonic 3 643.8541 6.41E+02 646.8497 1.528404 

2 - 6 7 640.3261 6.37E+02 643.3299 1.532581 

2 - 6 11 635.2995 6.32E+02 638.2952 1.528408 

2 - 6 15 626.9536 6.24E+02 629.9117 1.509264 

2 - 6 19 619.0229 6.16E+02 621.9877 1.51271 

2 - 6 23 612.1661 6.09E+02 615.1054 1.499648 

2 - 6 27 603.4543 6.01E+02 606.3684 1.486824 
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(c) 

03360, 3360, 0.341094787, 0.0184, 0,K S r dσ= = = = =  
1, 365, 1 365, 64, 200000T s ST N T n N= = ∆ = = =  

Type of average Window size Price Conf. Int. Std. err. 

Arithmetic 3 666.3121 (662.7878, 669.8365) 1.7981 

 7 662.7334 (659.2172, 666.2496) 1.794 

 11 659.2736 (655.7652, 662.7820) 1.79 

 15 655.7952 (652.2948, 659.2956) 1.7859 

 19 652.335 (648.8427, 655.8272) 1.7818 

 23 648.8879 (645.4037, 652.3720) 1.7776 

 27 645.3791 (641.9031, 648.8550) 1.7735 

Geometric 3 666.099 (662.5751, 669.6229) 1.7979 

 7 662.1874 (658.6724, 665.7024) 1.7933 

 11 658.412 (654.9056, 661.9185) 1.789 

 15 654.6244 (651.1266, 658.1222) 1.7846 

 19 650.8632 (647.3743, 654.3520) 1.78 

 23 647.1219 (643.6418, 650.6020) 1.7756 

 27 643.322 (639.8508, 646.7931) 1.771 

Harmonic 3 665.8863 (662.3629, 669.4097) 1.7977 

 7 661.6427 (658.1289, 665.1564) 1.7927 

 11 657.553 (654.0486, 661.0575) 1.788 

 15 653.4574 (649.9623, 656.9525) 1.7832 

 19 649.3978 (645.9123, 652.8832) 1.7783 

 23 645.3643 (641.8883, 648.8403) 1.7735 

 27 641.2749 (637.8085, 644.7412) 1.7686 

7. Conclusions 

Upon running our simulations, we observe many noticeable differences between 
the methods we use to compute the price of the options, as well as between dif-
ferent types of options. Firstly, when comparing option prices between the Monte 
Carlo and Antithetic Monte Carlo simulations for the Black-Scholes Model, we 
find that employing the latter significantly reduces standard error. 

Regarding select lookback options, we notice a clear decrease in price as time 
spacing between the monitor instances increases for both Black-Scholes and NIG 
implementations, a result of a lower number of asset return values being consi-
dered for pricing the option. With respect to our proposed select window aver-
age lookback options, we observe a similar phenomenon for both the Black- 
Scholes and NIG implementations. We find that as the size of the window in-
creases, the option price decreases, regardless of the type of averaging that is  
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Figure 4. Changes in Option Price as Time Spacing Increases for Black-Scholes, NIG and 
RFSV model. 

 

 
Figure 5. Model implied volatility. 

 
used. Moreover, our prediction that the harmonic mean yields the lowest option 
price holds true across all window sizes, the arithmetic mean results in the high-
est option price, followed by the geometric and harmonic means, respectively. It 
must be noted, however, that we employ the same random trajectory in the si-
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mulations for comparing the different averages, so as to fairly compare their 
performances. Finally, for all simulations, we observe that the option prices re-
sulting from using the NIG model are generally slightly lower than from using 
the Black-Scholes model, irrespective of any other considerations (e.g. time spac-
ing and type of average). Lookback options prices obtained via rough volatility 
volatility model are lower than the benchmark model. 

Further research direction related to this work will be to consider window av-
erage lookback options by incorporating model regime switching features into 
our implementation. 
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