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Abstract 
Estimation of NEE of Grasslands ecosystems becomes mandatory as these 
grasslands with their wide spread (almost 40% of land of the earth) and high 
plant diversity play a major role in global carbon balances and NEE at both 
local and global scale. The present study has been focused on understanding 
the role of different plant species responsible for variation in NEE of the Ban-
ni Grasslands of India. These grasslands form a belt of arid grassland having 
low growing forbs, graminoids and scattered tree cover. Due to its wide 
spread and inaccessibility of Banni, this study utilized spatial approach for 
evaluating carbon emissions and NEE. Landsat data was utilized for vegeta-
tion type classification and SMAP data for extraction of NEE values proved 
their potential for categorising vegetation type and generating NEE values 
precisely. Three major plant types were identified from the study area viz., 
Grasslands, Land with Acacia and Land with Prosopis. Grasses were domi-
nant covering 77% and the rest of the area was occupied by the other two 
classes, i.e. Acacia and Prosopis. The NEE values were higher for the grasses 
when compared to the other two plant species proving to be the active sinks 
when compared to other plants. The differential contribution of NEE by spe-
cies has been depicted in the present work. 
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1. Introduction

Regional and interannual patterns of the terrestrial carbon dynamics are chang-
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ing enormously due to increasing atmospheric CO2 and climate change which 
makes it imperative to understand the phenomenon at ecosystem level [1] [2] 
[3]. Estimation of Net Ecosystem (CO2) Exchange (NEE) is an important para-
meter to understand the carbon dynamics of terrestrial ecosystems as it outlines 
the net exchange of Carbon (C) occurring between an ecosystem and the at-
mosphere (per unit ground area) [4] [5] [6] [7]. It is crucial in determining the 
role of these ecosystems in regional and global C balances. Grasslands are one of 
the important terrestrial ecosystems which play a significant role in NEE of CO2 
at both local and global scale owing to their wide coverage and high plant diver-
sity [8]. These ecosystems are highly sensitive to precipitation variability and 
thus show varied patterns of interannual variations in net primary productivity 
which shows a direct impact on NEE [9] [10] [11]. Not only that, but NEE is 
very sensitive to on-going shifts in the plant species composition [12] [13]. Even 
short-term changes in plant species alter the ecosystem carbon budgets through 
increased inter and intra-annual variations in NEE by biophysical and biogeo-
chemical pathways [14]. Plant species type is important parameter to be consi-
dered while analysing the variations in NEE of the grasslands [15]. It is therefore 
important to evaluate interactions and feedbacks within the carbon cycle with 
different plant species [16]. The role of grasslands in NEE has not been ade-
quately quantified specifically in India though it has potential importance and 
contribution. Therefore, this study has been taken up for the Banni Grasslands 
located in Kutch, Gujarat, India. These grasslands are one of the largest grass-
lands of its kind in Asia with high plant diversity which highly influences the 
global and regional climate. Due to its wide spread and inaccessibility of Banni, 
this study utilized a spatial approach for evaluating carbon emissions and NEE. 
As the satellite-based methods have high spatial-temporal resolution even at 
landscape level, their utilization in measurement of NEE becomes imperative.  

Satellite remote sensing continuously measures the carbon fluxes with high tem-
poral and spatial coverage and provides an attractive and powerful tool for up- 
scaling the fluxes. Many ecosystem carbon exchange models have been devel-
oped which utilizes remote sensing data to understand the carbon dynamics at 
the ecosystem level or beyond [17]. Combining NEE data with remote sensing is 
the most feasible method for mapping carbon sources and sinks for grasslands 
[18]. Satellite data provides consistent and systematic observations of vegetation 
and ecosystems, and plays an important role in estimation of NEE [19]. Using 
remote sensing for NEE measurements avoids problems associated with small- 
scale flux sampling while determining areas of sink. In earlier years, biomass in-
ventory and soil carbon quantity were utilized to measure an ecosystem NEE 
over a specific period [20]. In today’s time, two main techniques have been de-
veloped for measuring NEE fluxes: the Eddy Covariance (EC) technique and the 
chamber technique. EC technique provides measure the fluxes continuously at 
ecosystem scales for many seasons and years along with quantifying the impact 
of various environmental factors on the fluxes [21] [22] [23]. However, this tech-
nique provides measurements over tower footprints with relatively smaller areas 
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that depend upon the tower height, canopy physical characteristics and wind 
velocity [24]. This has unveiled the limitations of this technique despite its high 
temporal resolution [25]. Chamber technique is important for point measure-
ments of NEE, but prone to a variety of potential errors and consumes plenty of 
time [26] [27] [28]. In addition, it is not possible to scale up net CO2 exchange 
over the ecosystem level using EC and Chamber techniques [29] [30] [31]. Ap-
plication of spatial approach can overcome this problem. Spatial approach also 
aids in understanding the distribution of different plant species of grasslands 
which helps in precise understanding.  

Distribution of different grasses, their association and net primary production 
of these ecosystems play crucial role in global carbon budget and influence re-
gional climate by modulating the evapotranspiration flux [13]. In this context, 
distribution and quantification of vegetation become imperative for understand-
ing to encompass the changes in carbon flux. Satellite-based Normalized Diffe-
rential Vegetation Index (NDVI) helps in comprehensive monitoring and quan-
tification of vegetation [32] [33] [34]. Fractional Vegetation Cover (FVC) which 
is derived from NDVI using empirical relations is the vegetation-covered frac-
tion of ground [35]. FVC is the ratio of the vertical projection area of vegetation 
(including leaves, stalks, and branches) on the ground to the total vegetation 
area which is directly detectable by the sensor from any view direction [36] [37]. 
FVC measured using spatial approach provides basic data for characterizing 
ecosystems which plays an extremely crucial role in the study of regional ecosys-
tems [38] [39] [40] [41] [42]. Most importantly, FVC helps in understanding the 
seasonal changes occurring in the exchange of CO2 between the land surfaces 
and the atmospheric boundary level [43]. 

Considering above facts, this study has been taken up to analyse the role of 
different plant species in variations of NEE to understand the carbon dynamics 
of Banni grasslands. These ecosystems are very sensitive to future changes in 
climate, and understanding how these systems have responded to climatic 
changes in the past can provide us with insights into their potential responses to 
future global change. 

2. Study Area 

Banni grasslands form a belt of arid grassland ecosystem covering almost 2675 
km2 on the outer southern edge of the desert of the marshy salt flats of Rann of 
Kutch in Kutch District, Gujarat State, India (Figure 1). Similar to other grass-
lands, vegetation in Banni is sparse and highly dependent on seasonal variations 
in monsoon. Growing season for grasses starts from the month of June (Onset of 
monsoon) and lasts up to December month. Banni is dominated by low-growing 
forbs and graminoids, many of which are halophiles (salt tolerant), as well as 
scattered tree cover and scrub. The tree cover is consists of Salvadora spp. and the 
invasive Prosopis juliflora while Cressa cretica, Cyperus spp., Sporobolus, Di-
chanthium, and Aristida are the dominant species found in the area. 
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Figure 1. Map showing the sampling points of the study area. 
 

Traditionally, the Banni was declared as a Rakhal (reserve grassland) where 
only milch cattle were allowed to graze, and sheep and goats were not allowed to 
reduce the pressure on the grasslands. People were not allowed to reside in the 
Banni. Later, sheep and goats were also allowed to graze in the area but grazing 
was regulated by imposing fee at various rates for different categories of lives-
tock. However, this traditional resource management system which had helped 
in the maintenance of equilibrium between environmental system and human 
activity since several centuries was no more functional [44]. The grazing regula-
tions slowly disappeared, and all kinds of livestock from every part of the state 
and neighbouring states were allowed into the area. Large numbers of livestock 
used to immigrate for grazing during 3 - 4 months of monsoon [45] [46]. Recent 
interventions such as introduction of P. juliflora, introduction of additional li-
vestock have led to reduction in carrying capacity of these grasslands. 

3. Materials and Methods 
3.1. Pre-Processing the Datasets 

Cloud-free Landsat ETM+ satellite data of Nov. 2017 was acquired from USGS 
website. The data was geographically corrected and was having geographical 
projection with WGS 84 datum. The study area was included in two different 
scenes. These two scenes were stacked separately and then mosaicked together to 
get the study area. The dataset was having the spatial resolution of 30 m × 30 m. 

Daily Soil Moisture Active Passive (SMAP) version 4.0 NEE data from the 
month of January to December 2017 i.e. for 365 days was acquired from the web-
site (https://nsidc.org/data/smap/data_versions). This data set was having the spa-
tial resolution of 9 km × 9 km. The dataset was having geographical projection 
with WGS 84 datum. This data was subset for the study area and then stacked 
month wise for further processing. 
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3.2. Methodology 

The study area was visited frequently for identifying the areas with different 
plant species. Landsat Enhanced Thematic Mapper Plus (Landsat ETM+) data of 
Nov. 2017 was utilized for vegetation classification. Normalized difference vege-
tation index (NDVI) and Fractional Vegetation Cover (FVC) of the study area 
were generated for November month of the years 2015, 2016 and 2017. Ground 
Control Points (GCPs) were collected for accurate identification of various species 
based on which the supervised classification was carried out. Supervised classifi-
cation was carried out using the maximum likelihood algorithm of Earth Re-
sources Data Analysis System (ERDAS) Imagine 9.1. Three different classes identi-
fied using the satellite data which were Land with Prosopis, Land with Acacia and 
Grasslands. Accuracy assessment of classified out was carried out by validating 
random points by field visits.  

Daily NEE values corresponding to the GCPs corresponding to the different 
plant species derived by classification (i.e. classes like Grasslands, Land with 
Prosopis and Land with Acacia) were extracted from the datasets. Extracted val-
ues were averaged out monthly in order to understand the seasonal variation in 
NEE. Cumulative NEE of different classes was also calculated. Maps for different 
outputs were generated using ArcGIS 10.4 software. 

NDVI of the study area was derived from Landsat ETM+ data of Nov. 2017. 
The study area was classified in the four classes, i.e., No vegetation (values lower 
than 0), Low vegetation (values between 0.1 and 0.3), Medium Vegetation (val-
ues between 0.3 and 0.5) and High vegetation (values above 0.5), based on the 
NDVI values. NDVI was derived using the following formula:  

NIR RedNDVI
NIR Red

−
=

+
                        (1) 

where NIR denotes the near infrared band and Red denotes the red band. 
FVC of the study area was derived using NDVI image using the following 

formula:  

NDVI NDVIsoilFVC 100%
NDVIveg NDVIsoil

−
= ×

−
                (2) 

where NDVI denotes the NDVI value of the pixel, NDVIveg is the NDVI value 
of a pure green vegetation pixel, and NDVIsoil is the NDVI value of bare soil. 

The study area was classified in following 4 different classes based on the frac-
tional vegetation coverage, i.e. Low (lower than 0% to 25%), Medium (25% to 
50%), Medium high (50% to 75%) and high (higher than 75%) [47].  

4. Results and Discussion 

Grasslands are amongst the important ecosystems that sequester and store large 
amounts of soil carbon, which is highly dependent on the factors like herbivory 
and precipitation. Studies have been attempted to understand effects of different 
factors on carbon cycling in different regions and how much do they contribute 
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to the NEE. The present study focussed on recognising the patterns of net CO2 
exchange in the Banni Grassland, the largest native grassland ecosystem in of 
Kutch region. The study conducted during three contrasting precipitation years 
(dry vs. wet summer), has allowed to investigate on vegetation types existing in 
this area and their impact on net CO2 exchange.  

Based on Landsat 2017 satellite data classification, three categories classes 
were identified, viz. Grasslands, land with Acacia and land with Prosopis. Out of 
three classes generated, Grasslands occupied almost 77% of the study area and 
were found to be distributed evenly. The grassland class was occupied by grass 
species like Dichanthium annulatum (Jinjvo), Cenchrus ciliaris (Dhaman), Spo-
robolus fertilis (Khevai) and Chloris barbata (Siyarpuchha) and undershrubs like 
Suaeda maritimum (Lano), Suaeda fruticosa (Untmorar), Suaedanudi flora (La-
no), and Tamarix aphylla (Lai). Acacia and Prosopis species occupied 19% and 
4% of the area respectively, with Acacia occupying the middle part of the study 
region while Prosopis at the southwestern side (Figure 2 and Figure 3). Classi-
fied output showed the accuracy of 85% with the kappa coefficient of 84.83. This 
indicated that the grasslands are still a dominant vegetation type of the study area 
which can contribute significantly in carbon dynamics. However, woody species 
like Prosopis and Acacia are slowly encroaching the area under grasslands, fur-
ther altering the carbon dynamics (49). 

Further investigation of vegetation carried out using NDVI and FVC for the 
three consecutive years confirmed the vegetation categorisation with NDVI and 
FVC values highest for Grassland followed by Acacia and Prosopis (Figures 
4-9). Most of the study area was covered by low vegetation indicating the pres-
ence of grasses which showed the FVC value of 60% - 70%. Higher area occupied  
 

 
Figure 2. Map showing plant species map of the study area. 
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Figure 3. Chart showing the area statistics of Banni grasslands. 

 

 

Figure 4. NDVI map of the study area for year 2015. 
 

 

Figure 5. NDVI map of the study area for year 2016. 
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Figure 6. NDVI map of the study area for year 2017. 
 

 

Figure 7. FVC map of the study area for year 2015. 
 

 

Figure 8. FVC map of the study area for year 2016. 
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Figure 9. FVC map of the study area for year 2017. 
 
by low vegetation, i.e. sparse grassland revealed the fact that the grasslands are 
under pressure and getting degraded at a faster rate. NDVI values also revealed 
the health status of vegetation of the study area because these values were closely 
related to biomass [48] [49], biomass moisture [50], leaf area index [51] [52], 
absorption of photosynthetically active radiation [53], trends of photosynthesis 
and transpiration [54] [55] [56], respiration [57] and CO2 uptake [56] [57].  

Clear seasonal variation in NEE was observed, i.e. negative values during the 
growing period (from Aug. to Nov.) of the grasslands and positive values rest of 
the year (during Dec. to July) (Figures 10(a)-(c)) [58]. NEE increased steadily 
with the progress of the growing season and decreased after the peak in the grow-
ing season. Seasonal changes in NEE reflected the vegetation phenological de-
velopment (in monsoon) and seasonal changes in environmental driving forces 
[59] [60]. The values ranged from −1.66 µg/m2 to 0.66 µg/m2 for grasses while it 
varied from −1.41 µg/m2 to 0.64 µg/m2 for Acacia. A negative value of NEE means 
a net carbon gain by the ecosystem, i.e., positive net ecosystem productivity (NEP), 
as it may be assumed NEP to equal-NEE [61]. Positive values of the NEE indi-
cated that the ecosystem was acting as a source during these months [62] [63]. 
The reason being in summer, water deficits caused leaf senescence (herbs) and 
therefore less assimilation of carbon leading to decrease in Gross Primary Pro-
duction (GPP) and thus positive NEE. Periods of negative NEE (indicating net 
ecosystem uptake) were smaller in magnitude and spanned a shorter duration 
and coincided with the growing period of the grasses (monsoon). Acacia ecosys-
tem varied from a net sink to a carbon source depending on the time of year, 
with a lower/higher magnitude during the warm/cold season [64].  

Yearly comparison of the NDVI, FVC and NEE showed that the NDVI and 
FVC were higher in the years 2015 and 2016 while the values were lower in the 
year 2017 (Figures 11-16). However, NEE values were found to be higher in the  
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Figure 10. (a)-(c) Variation observed in NEE between years 2015 to 2017. (a) Map show-
ing NEE of December 2015; (b) Map showing NEE of December 2016; (c) Map showing 
NEE of December 2017. 
 

 

Figure 11. Chart showing the yearly variation in NDVI. 
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Figure 12. Chart showing the yearly variation in NEE. 
 

 

Figure 13. Chart showing the yearly variation in FVC. 
 

 

Figure 14. Chart showing comparative account of NDVI, FVC and NEE for year 2015. 
 

 

Figure 15. Chart showing comparative account of NDVI, FVC and NEE for year 2016. 
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Figure 16. Chart showing comparative account of NDVI, FVC and NEE for year 2017. 
 

 

Figure 17. Chart showing seasonal variations in NEE. 
 
year 2017 as compared to the years 2015 and 2016. This indicated that the Eco-
system CO2 exchange rates were strongly influenced by the type of vegetation 
which was also evident from the NEE values obtained for these categories. NDVI 
of the Banni grasslands was found to be higher than a threshold of about 0.3 
which indicated that grasses were strong enough to drive a substantial portion of 
the NEE flux and provided improved NEE in comparison to the Prosopis and 
Acacia. For each category a steady increase with the growing season with a dis-
tinct decrease after the peak season was noted. With respect to the NEE values 
for different vegetational categories, not much difference was observed. Though 
Prosopis showed extreme higher and lower values ranging from −1.75 µg/m2 to 
0.73 µg/m2 the cumulative values for NEE was highest for Grasses i.e. −0.5 fol-
lowed by Acacia and Prosopis; 0.18 and 0.0, respectively proving grasslands to be 
an effective sink of carbon dioxide sequestration and no contribution of Prosopis 
for the same (Figure 17). Prosopis showed more negative values of NEE as com-
pared to Acacia during the growth period while it showed more positive values 
during the summers. This indicated that though Prosopis absorbed a high amount 
of carbon and acted as a sink during growth period but at the same time released 
a high amount of carbon and acted as the source of the carbon. This may lead to 
a decreased capacity of carbon uptake and conversion of this ecosystem into the 
source of the carbon. 
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5. Conclusion 

This study proved that NEE varies with different plant species and in this study, 
grasses were found to be the most active sink of the carbon dioxide while Proso-
pis and Acacia acted as weaker sinks. The ecosystem of Banni acted as the source 
of C for almost an entire year in the absence of grasses (i.e. during January to 
June) while as a sink during the growth period of grasses (i.e. during July to De-
cember). Furthermore, application of spatial approach provided consistent and 
systematic observations for monitoring plant species of Banni grasslands and 
NEE data at fine temporal resolutions which helped in comprehensive under-
standing.  
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