®

Check for
updates

A New Reconfigurable Architecture
with Applications to IoT and Mobile
Computing

Amir Masoud Gharehbaghi®®, Tomohiro Maruoka, and Masahiro Fujita

The University of Tokyo, Tokyo, Japan
{amir,maruoka}@cad.t.u-tokyo.ac.jp, fujita@ee.t.u-tokyo.ac.jp

Abstract. Traditional reconfigurable devices known as FPGAs utilize
a complicated programmable routing network to provide flexibility in
connecting different logic elements across the FPGA chip. As such, the
routing procedure may become very complicated, especially in the pres-
ence of tight timing constraints. Moreover, the routing network itself
occupies a large portion of chip area as well as consumes a lot of power.
Therefore, limiting their usage in mobile applications or IoT devices with
higher performance and lower energy demands. In this paper, we intro-
duce a new reconfigurable architecture which only allows communica-
tion between neighboring logic elements. This way, the routing struc-
ture and the routing resources become much simpler than traditional
FPGAs. Moreover, we present two different method for scheduling and
routing in our new proposed architecture. The first method deals with
general circuits or irregular computations and is based on integer lin-
ear programming. The second method is for regular computations such
as convolutional neural networks or matrix operations. We have shown
the mapping results on ISCAS benchmark circuits as general irregular
computations as well as heuristics to improve the efficiency of mapping
for larger benchmarks. Moreover, we have shown results on regular com-
putations including matrix multiplication and convolution operations of
neural networks.

Keywords: Reconfigurable architecture - Placement and routing -
FPGA - Mobile computing - IoT - Convolutional neural network

1 Introduction

Recently, with the advances in internet of things (IoT) technology as well as the
increase in the computing power of mobile devices, there is a growing interest in
performing different computational tasks on IoT or mobile platforms, especially
for edge computing solutions.

In the edge computing paradigm, it is essential to reduce the amount of data
that is transferred between IoT nodes and the servers. Therefore, the IoT nodes
or mobile devices require to perform more computation tasks. This way, the

© The Author(s) 2019
L. Strous and V. G. Cerf (Eds.): IFIPIoT 2018, IFIP AICT 548, pp. 133-146, 2019.
https://doi.org/10.1007/978-3-030-15651-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15651-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-15651-0_12

134 A. M. Gharehbaghi et al.

communication bottleneck due to data transfer bandwidth or communication
latency is avoided.

Programmable hardware devices, such as Field Programmable Gate Arrays
(FPGASs), have shown to be superior in term of performance as well as energy
efficiency for different computation tasks compared to using CPUs or GPUs [1-
5]. Consequently, very promising to be used in IoT or mobile platforms. Another
category of programmable devices is Coarse Grain Reconfigurable Architecture
(CGRA). CGRAs usually provide a less complicated and more regular com-
munication among the processing elements or the processor cores compared to
FPGAS to enable acceleration of applications [6-9].

In this work, we have proposed a new reconfigurable hardware architecture
suitable for IoT or mobile platforms with the following characteristics.

1. Traditional FPGA devices have a complicated routing architecture to provide
flexibility in connecting internal logic blocks together. Consequently, mapping
an application to an FPGA device may become very difficult when the uti-
lization of internal blocks is high, or the timing constraints are very tight
and hard to achieve. Therefore, we have proposed an architecture which pro-
vides connectivity only to neighbors employing a mesh topology, similar to
CGRAS; consequently, simplifying the routing architecture as well as the rout-
ing method greatly.

2. In the traditional FPGA devices, the routing network, because of its com-
plexity, occupies a large portion of the chip area; consequently, increasing the
power consumption. However, in our proposed architecture, because of con-
nectivity to only neighbors, the routing network is greatly simplified, reducing
its size as well as the power consumption.

3. Traditional FPGA devices are very fine grained, meaning that the basic func-
tional blocks can only implement basic logic functions. However, in our archi-
tecture, the basic functional blocks may be more complicated, for example
ALUs or more complicated processing elements. However, unlike CGRAs the
functional blocks are not very coarse grained.

In addition to the new proposed architecture, we have provided a scheduling
and routing algorithm using integer linear programming (ILP). Starting from
a data-flow graph model of the application, ILP formulation results in efficient
mapping of the application to our proposed architecture, as well as the optimum
latency for executing the application. Moreover, we have introduced heuristics
to improve the efficiency of the routing method for larger circuits.

The proposed mapping method is general and may be used for random logic
or irregular computations as well as regular computations such as operations
on a matrix or convolution operations in neural networks. However, for regular
computations there is a more efficient way that is scalable to even very large
problems that employs the inherent regularity of the operations. Our proposed
mapping method for large regular computations is based on automatic mapping
for the small instances of the problem, and induction-based generalization for
larger problem.

A New Reconfigurable Architecture 135

I

lify:

1
ﬁ
2

||I‘H

Fig. 1. Traditional FPGA architecture Fig. 2. Traditional CGRA architecture

Please note that because of our simpler and more regular routing architec-
ture compared to traditional FPGA devices, it is possible to achieve very deep
pipelining with higher clock frequency, consequently improving the performance
of the computation on our proposed architecture.

The rest of the paper is organized as follows. Section 2 gives a background
on reconfigurable devices and ILP. Section 3 presents our proposed hardware
architecture. Section4 presents our scheduling and routing (mapping) method
for general circuits or irregular computations. Sectionb presents our method
for regular computations. Section6 shows the experimental results. Section 7
concludes the paper and gives some future directions.

2 Background

2.1 Reconfigurable Hardware

Field-programmable gate array (FPGA) is a semiconductor device with a matrix
of programmable logic blocks and a programmable routing network. Figure 1
shows a simple architecture of a FPGA. Configurable logic blocks (CLBs) con-
tain 1 or more lookup-tables (LUT) to implement small logic functions. LUTs
may have 4 or more inputs and can implement any logic function of 4 or more
inputs. Each CLB may contain 1 or more LUTs. The routing network con-
sists of programmable switch blocks (SB) and a number of links connecting SBs
together. By programming SBs, CLBs can be connected together to implement
larger logic functions. Moreover, some SBs are connected to input/output (I/0)
pins to be able to transfer data between FPGA and the outside world.

Coarse grain reconfigurable architecture (CGRA) is another kind of reconfig-
urable device, shown in Fig. 2. One main difference between CGRA and FPGA
is the communication network. CGRAs usually use 2-D mesh or torus network.
Moreover, the processing elements of CGRA are processor cores or some com-
plicated processing units, providing coarse grained parallelization of operations
or tasks.

136 A. M. Gharehbaghi et al.

vt
e
=

-« —EJ s o —r -
- -f—l IJ::;-—!-_l |-,- -«
o] ! |._? _____________

Fig. 3. Proposed architecture

2.2 ILP

Integer linear programming (ILP) is an optimization method that tries to find
the values for a set of integer variables given a set of linear constraints, such that
a linear function becomes minimized or maximized.

For example: minimize x + 6 * y subject to:

2%x+y<T 3xx+5xy<15 2,9 >0

There are numerous problems in the field of electronic design automation
(EDA) that can be mapped to an ILP problem, including scheduling and routing,
which is the target of this paper.

3 Hardware Architecture

In this section, we present our proposed hardware architecture and comparison
to the traditional FPGA architecture.

The general architecture is shown in Fig.3 (left). The basic building blocks
are configurable logic block (CLB), that are connected in a 2-D mesh architec-
ture. Each CLB is connected to its four neighboring CLBs (North, South, East,
West), as shown in Fig.3 (center). Moreover, each CLB’s data can be used in
the next cycle with the Local link. CLBs at the edges are connected to I/O pins
to transfer data to/from the device.

Inside each CLB is shown in Fig. 3 (right). Each CLB contains a number of
4-input lookup tables (LUTs). LUTs can be used to implement any 4-input logic
function. The 4 inputs of the LUT are selected from the 5 inputs (N, S, E, W,
L). Output of each LUT is latched and is send to all the four neighbors.

Each CLB may have a number of LUTs (n). Therefore, n different logic
functions may be implemented in a CLB. Also, because of the connectivity to
all neighbors, n data line exists between every two neighboring CLBs.

Although in the architecture shown in Fig.3, LUTSs are used inside CLBs,
LUTSs may be replaced with more complex processing elements such as ALUs.
This way, higher-level applications, instead of logic functions, can be mapped to
the hardware easily.

A New Reconfigurable Architecture 137

Critical Path

> Combinational Circuit > :
: Crmcal Path
T Register _
Crltlcal Path 2 /}>
Qﬂ ;> ; Combinational Circuit

Combinational Circuit

X

Fig. 4. Comparison of pipelining in a FGPA (left) and the proposed architecture (right)

Following are the main differences between the proposed architecture and a
traditional FPGA.

In the proposed architecture, data can be transferred only from a CLB
to a neighboring CLB. Therefore, to transfer data from a CLB to other non-
neighboring CLBs, some CLBs in between should be used as transfer points.
However, in a FGPA data may be transferred from any CLB to any other CLB
as long as there is an available routing resource. Consequently, data transfers
in FPGA may take a long time, increasing the critical path delay, and reducing
the clock frequency. However, in our proposed architecture, all data transfers are
between two neighboring CLBs, and take exactly one clock cycle. Moreover, the
critical path delay is fixed, and so the clock frequency.

This means that a given application, when mapped to our architecture,
may result in very deep pipeline. In general, having a very deep pipeline helps
to improve the performance, although the latency may be increased. Another
important feature of our proposed architecture is that the critical path delays
are fixed; hence, the timing closure problem may not happen. Figure 4 illustrates
the differences in the pipelining of a FPGA and our proposed architecture.

4 General Mapping Method

In this section, we present our mapping method for the proposed hardware archi-
tecture. The input of the mapping method is the data-flow graph (DFG) of the
application, and the general information about the hardware such as the archi-
tecture mesh size, and the number of LUTs in a CLB. The output of the method
specifies that each node of the DFG is executed on which LUT of which CLB,
and at which cycle. For example, the simple DFG shown in Fig.5 (left) will be
mapped to the proposed architecture as shown in Fig.5 (right).

4.1 ILP Variables

We have formulated the problem of mapping as an integer linear programming
(ILP) problem that can be solved with any ILP solver, as follows. We have
defined the binary variable D to represent the data transfers.

138 A. M. Gharehbaghi et al.

G 42
RI1 RI2
@D @& D l
LSS
T g
RI3 RI4

Fig. 5. Example of mapping a DFG in to the proposed architecture

Cycle1
Cycle 2
Cycle3

Cycle 4

p: CLB’s id t: Global clock
Fig. 6. Parameters in mapping DFG nodes

D(op,t,p): op data is mapped to be used at cycle ¢ on CLB number p

op, t and p parameters are shown in Fig. 6.

An example of binding is shown in Fig. 7. Assuming, each gate in the figure
is going to be executed on one LUT, one possible way is as follows. Gatel is
executed in CLB5 at time 2, and data is transferred at time 3: D(1, 3, 5)=1.
Gate2 is assigned to CLBS8, which is a neighbor of CLB5, and executes at time
3, and its output is transferred at time 4: D(2, 4, 8) =1.

D(1,3,5)=1
D(2,4,8)=1

computed at cycle 3

Fig. 7. Mapping example

4.2 ILP Constraints

There is a constraint that all the nodes’ data should appear at least once, mean-
ing that all the operations are performed, as follows:

Vop,) Zp D(op,t,p) > 1

A New Reconfigurable Architecture 139

Note that in the definition of variables, we have assumed that any op can
be mapped to any CLB, meaning that all CLBs are capable of executing any
DFG node function. However, in general, we may have different DFG node types
and different CLB types, and each type of DFG node may be mapped to dif-
ferent CLB types. In that case, we need additional constraints to define not
allowed resource bindings, by adding constraints that which data transfers are
not feasible. It means that some D(op, t,p) variables are always 0.

Data transfer constraints make sure that all the edges of DFG are assigned
at least once. Moreover, because of the proposed architecture, data transfer con-
straints make sure that correct sequence of data transfer is performed, meaning
that data is only transferred to the neighboring nodes in one cycle. The con-
straints are as follows:

Vop,t,p, oppar,

=Dlop,t.p)+) Dlopt=1p)+ D(oppar,t=1,p) >0
Vop,t,p,

_D(Op7t7p)+zp’6p D(Opat+17p/)+z Z D(Opchiat"i'lap/) ZO

OPchi P'EPs
The other constraint is regarding the number of registers in a block. Assuming
the number of registers is n, maximum n operations may be performed in a block:

Vp,z Z D(op,t,p) <n
op t

4.3 Objective Function

In our problem, the goal is to map in such a way that the latency is minimum,
meaning that the last cycle that any DFG node is executed (T') be minimum.
The constraint for the objective function is as follows:

Vop,t,p, (t x D(op,t,p) <T)

However, practically we can avoid adding the above constraint, as the addi-
tional constraints slow down the ILP solver. In our solution, when we are gener-
ating the problem for the ILP solver, we only add D(op, t, p) variables for ¢t < T.
This way, if the problem has a solution with time limit of T, it can be solved.
Otherwise, the problem has no solution, meaning that the execution of the given
DFG in the given architecture cannot be finished in less than T cycles.

5 Regular Computations Mapping Method

The general mapping method presented in the previous section works for any
kind of circuit. However, it is required to employ heuristics to become scalable to
larger circuits, and, heuristics may largely affect the quality of results. Therefore,
we are proposing another mapping method that is both scalable and optimal

140 A. M. Gharehbaghi et al.

W

o XD (D

w_:][;L@ [

S s o

WIL](0] mee=conam
™ n(Yf

w0 cr s

w um..® ':-.v.l.L,z;@': B g

<t .bz]" s[31~

W o

‘ \e 5[0} ° ° ° ° Ist] m\[l!

>\>1] ﬂs[z} vlsllf
l3JC)

Iseim1 wil wi2 wi3 wi4\ /Il o) /
Iseim2 | _ [w21 w22 w23 w24 12 @ @
Leim3 | 13 el Wel-

w3l w32 w33 w34 mu s2r
Istim4 1.4

w4l w42 w43 wi4 meai

Fig. 8. Matrix-vector multiplication Fig. 9. Multiplication solution with
global communication

for large regular computations. One of the important characteristics of regular
computations, like matrix operations or convolutions on neural networks, is that
the general flow of the operations is very similar or the same for different sizes
of the problem. Therefore, if the optimal solution for the small size problem is
known, its generalization to larger size problems is possible.

The general flow of the proposed mapping method for regular computations
is as follows:

1. Map the smaller size problem optimally by an automatic method, like the
proposed method in the previous section.

2. Use induction methods to generalize the solution of small problem for large
one, semi automatically by human guidance.

3. Map the large problem optimally, automatically, utilizing the induction.

The generalization phase results in a set of constraints that basically limits the
search space of the solver; consequently, larger problems can be solved very
efficiently by an automated method. Following, the method is shown on two
different examples.

5.1 Matrix-Vector Multiplication

Matrix-vector multiplication is one of the basic operations on matrices that have
many applications in different domains including neural networks. Figure 8 shows
the multiplication of a 4 x 4 matrix, and Fig. 9 shows its corresponding data flow
graph that is mapped to 4 blocks. The flow of data among the blocks is like a ring
connection, and the mapping is followed by the “natural” order of operations by
a human. As shown in the figure, the mapping in this case is not optimal as it
requires a lot of global data transfers among the blocks.

A New Reconfigurable Architecture 141

w21

Istim4 Istim3 Istim2 Istiml
Fig.10. Multiplication solution 1: Fig.11. Multiplication solution 2:
local transfer of partial products local transfer of input vector

Following the proposed method, we have tried to find the optimal solution
for this matrix-vector multiplication. Two different optimal results are obtained
that are shown in Figs. 10 and 11. In the first solution, the partial products are
propagated from one block to its neighbor block, while in the second solution,
the input vectors are propagated.

The above observations regarding the flow of data in the solutions can be
done by a human, and that knowledge can be used in a program to automati-
cally generate and verify the solution for larger size matrices, as shown in the
experimental results section.

5.2 Convolutional Neural Networks

Nowadays, convolutional neural networks (CNNs) are used in many applica-
tions; hence, acceleration of the convolution operations are very important. In
this section, we present an optimal mapping of convolution operations in one
convolution layer of CNN for image classification as an example.

Figure 12 shows a typical neural network for image classification. At first, a
moving window of different sizes performs feature extraction on the input image,
using convolution operations. At the end a fully connected neural networks per-
forms image classification based on the extracted features from the image.

The convolution operation on a moving window usually requires a lot of
processing power; hence, a target of acceleration. We have proposed a sequence
of operations for a window, following ring connection-like order of operations as
well as moving the window on the input image to maximize the utilization of pro-
cessing element in each block as well as making data transfers locally. Figure 13
shows the order of operations for 4 x 4 window, though it can be extended to
other window sizes. Figure 14 shows the data flow graphs for image of 4 x 4 and
window size of 2 x 2. Similarly, it can be extended to any image size and any
window size.

142 A. M. Gharehbaghi et al.

e e S — e e e e e e e e e

- ™~ \ 7 \ A \
4 \ ! C O U H H]
; W, @ o, | i '

I 1
< =Y Bl ! |
' il Ko S L al20l0])! 1
I | Hl: . 1! 211302, |: al3l0 |1'|: 3lo |
[1 IN| s ¥ lal2]a] 73 i o2l oo |
! il '|.1||3— CRA RO 13 7 53) A0
' i) % :'1 2 EAE] }:.111;332}: 213 [3 i

| 2[1 [
i i :: 4| HOOnBEgR :I‘;!‘ :
‘\ ': % ||1-|44.| |:1°‘°° ‘: 3 1
\ P JHEIEIEIE L onoog JREE]
N ———————— C M e ——— P [N -
Input FMs X< convweights 6% Yoonv Yact Yeeol

Fig. 13. Order of convolution operations: ring connection in mesh architecture

6 Experimental Results

In this section, we present our experimental results on mapping different DFGs
into our proposed architecture. In our experiments, we have used DFGs obtained
from ISCAS benchmark circuits and mapped them to our proposed hardware
assuming LUTSs in our blocks. Similarly, the DFGs may be obtained from other
applications, and the block contents may be ALUs or other more complex pro-
cessing elements, without affecting the mapping process or the mapping results.
The process of obtaining DFGs is as follows:

1. The original circuit is synthesized and mapped into to netlist of LUTs with
ABC tool [11]

2. The netlist of LUTs is converted to DFG as follows: each LUT in the netlist
becomes a node in DFG, and for each connection in the netlist we have the
corresponding edge in the DFG.

We convert DFGs to ILP formulas with our mapping program written in Python.
For the experiments, we have used Gurobi optimizer [12]. All the experiments
are performed on a server with Xeon E5 2.2 GHz processor and 512 GB memory
running Linux kernel 4.16.

In the first experiment, we generated DFG for the combinational ISCAS
benchmark circuits, as explained above. The DFG are then mapped to our hard-
ware structure, as shown in Table1l. Columns 1 and 2 show the circuit name,
and its number of inputs/outputs, respectively. Columns 3, 4, and 5 show the
number of nodes, edges, and levels in the DFG, respectively. Columns 6 shows
the size of the mesh structure. Columns 7 and 8 show the size of the ILP prob-
lem in terms of number of variables and number of constraints of ILP formula.

A New Reconfigurable Architecture 143
So_[H oo, [
214122 2,2+2,3
11112 |13 |14 a o o °
21122 (23|24 o ° O °
1 O OO)
31 (32|33]34
41 42|43 |44 (DO%)\ 21p22
v
3,14-3,2
®
Fig. 14. Data flow graphs for 4 x 4 image and window size of 2 x 2
Table 1. Experiment 1: mapping of DFGs from ISCAS benchmark circuits
Circuit |DFG Mesh |ILP Latency | Mapping
size time
I/O |Nodes |Edges |Level Var. |Const.
5298 17/20 |42 148 6 6 X6 4,528 112,693 |6 7.0s
s344 24/26 |44 147 6 6 X6 5,484|13,615 |6 17.4s
s382 24/27 |56 201 6 6 X 6 5,368|15,214 |6 19.5s
s400 24/27 |55 203 6 6 X6 5,336|15,409 |6 19.0s
s420 34/17 |59 216 7 8x 8 9,364|27,019 |N/A >1 day
s444 24/27 |55 216 6 6 X6 5,284|15,085 |6 17.6s
s510 25/13 |98 353 7 8% 8 11,692(41,840 |7 32,664 s
$526 24/27 |83 299 6 8x 8 9,7731|30,406 836.5s
s641 35/24 |79 234 9 8x8 31,35675,939 |N/A >1 day

Column 9 shows the latency of the mapped circuit that is the number of clock
cycles to finish executing the DFG on the target hardware. Column 10 shows
the execution timr of the ILP solver to find the optimum solution.

As shown in the results, the complexity of finding optimum solution increases
by increasing the number of DFG nodes as well as the number of I/O of the
circuit. Therefore, for some circuits the optimum results could not be found
even in 1 day.

144 A. M. Gharehbaghi et al.

Fig. 15. Partitioning of the architecture into 2

In the next experiment, we tried to improve ILP solving time by partitioning
the DFG into 2 sections, such that each section will be implemented in one of
the 2 partitions of the hardware as shown in Fig. 15.

We have used hMETIS graph partitioning tool [13]. h(METIS tries to partition
the graph into 2 subgraphs in a way that each subgraph has almost the same
number of nodes, and the number of edges crossing a subgraph into another
subgraph is minimum. In other words, the number of data transfers among the
subgraphs is minimum, while almost uniformly distributing the DFG nodes.
The results are shown in Table2 for the four hardest cases. Comparing the
results without graph partitioning and with graph partitioning, the latency is
not increased while the execution time of ILP solver is reduced by an average
more than one order of magnitude. Note that hMETIS is very fast and for all
the DFGs finishes in less than 100ms. Moreover, for one of the cases that could
not be solved because of timeout, the optimum solution is obtained. However,
for one of the circuits we still cannot find optimum solution, and we need other
heuristics to reduce the runtime further, and it is part of our future work.

In the next experiment, we used the proposed mapping method for matrix-
vector multiplication. First, we tried the mapping for 4 x 4 matrix, as explained
before, as the guidance for generalization to larger matrix operations. Then, we
added constraints to the mapping program to limit the flow of operations for
arbitrary size matrices similar to the case of 4 x 4. The results of mapping larger
matrices are shown in Table3. Without the generalization of the solution for
4 x 4 matrices, the problem for matrices larger than 8 x 8 could not be finished
in one day. However, with the proposed generalization methods, matrix size of
32 x 32 can be mapped into 4 cores in less than 25 min.

Table 2. Experiment 2: mapping after partitioning original DFG to 2

Circuit |Mesh |Sub-ILP Whole-ILP Latency |Mapping |Mapping time
size time (no |(w/partition)
partition)
Var. Const. | Var. Const.
s420 8 x 8 [4,374 13,745 | 5,224 14,625 |8 >1day |18,936s
s510 8 x 8 2,602 8,413 14,241 15,231 |7 32,664s 1,415s
$526 8x8 2,284 7,532 3,795 10,411 |6 836.5s 40.0s

s641 |8x8 7,030 |17,934|N/A |N/A |N/A >1day |>1 day

A New Reconfigurable Architecture 145

Table 3. Experiment 3: mapping of matrix-vector multiplication

Matrix dimension (N) | # cores (M) | Mapping time (s)
15 3 14
16 4 15
8 2 1.2
12 4 1.6
32 4 1437

7 Conclusions

In this work, we have presented a new reconfigurable architecture for IoT
and mobile platforms. Our hardware consists of several logic blocks connected
through a mesh network. The proposed hardware architecture provides a general
platform for both fine- and coarse-grained computation. Compared to traditional
FPGA devices, our proposed hardware can achieve easily very deep pipelining;
hence, providing high performance computation.

In addition, we have proposed the general mapping method based on ILP
formulation and heuristics to improve its efficiency. Our mapping method starts
from the data-flow graph (DFQG) of an application and results in optimal latency.
The general mapping method works for any kind of computation. However, for
regular computations such as matrix operations or convolutions on CNN, we have
proposed a method scalable to large designs. The method is based on solving
the problem automatically for small problem, generalize it by human, and solve
the problem for larger problems automatically.

Our future work is improving the efficiency of the general mapping as well
as experimenting with mapping high-level applications to coarse-grained blocks.
Moreover, we are working on automation of the generalization process.

References

1. Rafique, A., Kapre, N., Constantinides, G.A.: Enhancing performance of tall-
skinny QR factorization using FPGAs. In: International Conference on Field Pro-
grammable Logic and Applications (FPL), pp. 443-450 (2012)

2. Aluru, S., Jammula, N.: A review of hardware acceleration for computational
genomics. IEEE Des. Test 31(1), 19-30 (2014)

3. Morcel, R., et al.: Minimalist design for accelerating convolutional neural networks
for low-end FPGA platforms. In: International Symposium on Field-Programmable
Custom Computing Machines (FCCM), p. 196 (2017)

4. Zhang, X., et al.: Machine learning on FPGAs to face the IoT revolution. In:
International Conference on Computer-Aided Design (ICCAD), pp. 894-901 (2017)

5. Song, M., et al.: In-situ Al: towards autonomous and incremental deep learning
for IoT systems. In: International Symposium on High Performance Computer
Architecture (HPCA), pp. 92-103 (2018)

146 A. M. Gharehbaghi et al.

6. Farmahini-Farahani, A., Ho Ahn, J., Morrow, K., Sung Kim, N.: DRAMA: an
architecture for accelerated processing near memory. IEEE Comput. Arch. Lett.
14(1), 26-29 (2015)

7. Liang, S., Yin, S., Liu, L., Guo, Y., Wei, S.: A coarse-grained reconfigurable archi-
tecture for compute-intensive MapReduce acceleration. IEEE Comput. Arch. Lett.
15(2), 69-72 (2016)

8. Tanomoto, M., Takamaeda-Yamazaki, S., Yao, J., Nakashima, Y.: A CGRA-based
approach for accelerating convolutional neural networks. In: International Sympo-
sium on Embedded Multicore/Many-Core Systems-on-Chip (MCSoC), pp. 73-80
(2015)

9. Bae, L., Harris, B., Min, H., Egger, B.: Auto-tuning CNNs for coarse-grained recon-
figurable array-based accelerators. IEEE Trans. Comput.-Aided Des. Integr. Cir-
cuits Syst. 37(11), 2301-2310 (2018)

10. ISCAS’89 benchmarks. http://www.pld.ttu.ee/~maksim/benchmarks/iscas89/

11. Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential
Synthesis and Verification. http://www.eecs.berkeley.edu/~alanmi/abc/

12. Gurobi optimization. www.gurobi.com

13. hMETIS - Hypergraph & Circuit Partitioning. http://glaros.dtc.umn.edu/
gkhome/metis/hmetis/overview

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://www.pld.ttu.ee/~maksim/benchmarks/iscas89/
http://www.eecs.berkeley.edu/~alanmi/abc/
www.gurobi.com
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
http://creativecommons.org/licenses/by/4.0/

	A New Reconfigurable Architecture with Applications to IoT and Mobile Computing
	1 Introduction
	2 Background
	2.1 Reconfigurable Hardware
	2.2 ILP

	3 Hardware Architecture
	4 General Mapping Method
	4.1 ILP Variables
	4.2 ILP Constraints
	4.3 Objective Function

	5 Regular Computations Mapping Method
	5.1 Matrix-Vector Multiplication
	5.2 Convolutional Neural Networks

	6 Experimental Results
	7 Conclusions
	References

