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ABSTRACT  Objective: Since its outbreak, the rapid spread of COrona VIrus Disease 2019 (COVID-19)
across the globe has pushed the health care system in many countries to the verge of collapse. Therefore, it is
imperative to correctly identify COVID-19 positive patients and isolate them as soon as possible to contain
the spread of the disease and reduce the ongoing burden on the healthcare system. The primary COVID-19
screening test, RT-PCR although accurate and reliable, has a long turn-around time. In the recent past, several
researchers have demonstrated the use of Deep Learning (DL) methods on chest radiography (such as X-ray
and CT) for COVID-19 detection. However, existing CNN based DL methods fail to capture the global context
due to their inherent image-specific inductive bias. Methods: Motivated by this, in this work, we propose the
use of vision transformers (instead of convolutional networks) for COVID-19 screening using the X-ray
and CT images. We employ a multi-stage transfer learning technique to address the issue of data scarcity.
Furthermore, we show that the features learned by our transformer networks are explainable. Results: We
demonstrate that our method not only quantitatively outperforms the recent benchmarks but also focuses on
meaningful regions in the images for detection (as confirmed by Radiologists), aiding not only in accurate
diagnosis of COVID-19 but also in localization of the infected area. The code for our implementation can
be found here - https://github.com/arnabkmondal/xViTCOS. Conclusion: The proposed method will help in

timely identification of COVID-19 and efficient utilization of limited resources.

INDEX TERMS Al for COVID-19 detection, CT scan and CXR, deep learning, vision transformer.
Clinical and Translational Impact Statement: The proposed method can be used to complement RTPCR
test for accurate and rapid prognosis of COVID-19 from chest radiographs.

I. INTRODUCTION

A. BACKGROUND

The novel COronaVIrus Disease 2019 (COVID-19) is a
viral respiratory disease caused by Severe Acute Respira-
tory Syndrome COronaVirus 2 (SARS-CoV2). The World
Health Organization (WHO) has declared COVID-19 a
pandemic on 11 March 2020 [1]. This has pushed the
health systems of several nations to the verge of collapse.
It is, therefore, of utmost importance to screen the positive
COVID-19 patients accurately for efficient utilization of lim-
ited resources. Two types of viral tests are currently popularly
used to detect COVID-19 infection: Nucleic Acid Ampli-
fication Tests (NAATS) [2] and Antigen Tests [3]. NAATS
can reliably detect SARS-CoV-2 and are unlikely to return a
false-negative result of SARS-CoV-2. NAATSs can use many

different methods, among which Reverse Transcription Poly-
merase Chain Reaction (RT-PCR) is the most preferred test
for COVID-19 due to its high specificity and sensitivity [4].
However, this test is expensive as it has an elaborate kit and
time-consuming. An RT-PCR test uses nose or throat swabs
to detect SARS-CoV-2 and requires trained professionals
instructed for the RT-PCR kit to carry out the RT-PCR test.
RT-PCR requires a complete set-up that includes the trained
practitioners, laboratory, and RT-PCR machine for detection
and analysis.

B. SCOPE AND CONTRIBUTIONS

Motivated by the success of the Deep Learning in diagnosing
respiratory disorders [5], several recent works have proposed
the use of chest radiography images (X-ray and Computed
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Tomography, CT) as alternate modality to detect COVID-19
positive cases [6]-[12] (Elaborated in Sec. II). Unlike in the
chest CT/X-ray of a healthy person, the lungs of COVID-19
affected patients show some visual marks like ground-glass
opacity and/or mixed ground-glass opacity, and mixed
consolidation [6].

While there has been a large body of literature on use
of Deep Learning for Covid detection, most of them are
based on Convolutional Neural Networks (CNNs) [12]-[15].
CNN, albeit powerful, lacks a global understanding of images
because of its image-specific inductive biases. To cap-
ture long-range dependencies, CNNs require a large recep-
tive field, which necessitates designing large kernels or
immensely deep networks, leading to a complex model chal-
lenging to train. Recently, Vision transformers [16] have
provided an alternative framework for learning tasks and
overcome the issues associated with convolutional inductive
bias as they can learn the most suitable inductive bias depend-
ing on the task at hand. Motivated by this, in this work,
we propose to employ a vision transformer (ViT) based trans-
fer learning method to detect COVID-19 infection from the
chest radiography (X-ray and CT scan imaging). Specifically,
the below are our contributions:

1) We propose a vision transformer based deep neural
classifier, xViTCOS for screening of COVID-19 from
chest radiography.

2) We provide explanability-driven, clinically inter-
pretable visualizations where the patches responsible
for the model’s prediction are highlighted on the input
image.

3) We employ a multi-stage transfer learning approach to
address the problem of need for large-scale data.

4) We demonstrate the efficacy of the proposed frame-
work in distinguishing COVID-19 positive cases from
non-COVID-19 Pneumonia and Normal control using
both chest CT scan and X-ray modality, through several
experiments on benchmark datasets.

Il. RELATED WORK

A. COVID-19 DETECTION USING CHEST CT

Chest Computed Tomography (CT) imaging has been pro-
posed as an alternative screening tool for COVID-19 infec-
tion [6], [7]. In [17] multiple features, such as Volume,
Radiomics features, Infected lesion number, Histogram dis-
tribution and Surface area are extracted first from the CT
images following which a deep forest algorithm, consisting
of cascaded layers of multiple random forests, is used for
discriminative feature selection and classification.

The work in [13] performs a comparative study by
exploiting transfer-learning to optimize 10 pre-trained CNN
models viz AlexNet [18], VGG-16 [19], VGG-19 [19],
SqueezeNet [20], GoogleNet [21], MobileNet-V2 [22],
ResNet-18 [23], ResNet-50 [23], ResNet-101 [23], and
Xception [24] on CT-scan images to differentiate between
COVID-19 and non-COVID-19 cases. As per the results
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reported in [13], ResNet-101 and Xception achieve best
performance. [25] segment out candidate infection regions
from the pulmonary CT image set using a 3D CNN seg-
mentation model and categorize these segments into the
COVID-19, TAVP, and irrelevant to infection (ITI) groups,
together with the corresponding confidence scores, using a
location-attention classification model. COVNet [26] is a
ResNet50 based CNN architecture that takes as input a series
of CT slices and compute features from each slice of the CT
series, which are combined by a max-pooling operation, and
the resulting feature map is fed to a fully connected layer to
generate a probability score for each class. Ref. [27] uses a
pre-trained EfficientNet as the backbone and extracts features
from each slice of CT data, and makes a binary prediction.
Next, the slice level predictions are combined using a multi-
layer perceptron (MLP) to make a final prediction at the
patient level. COVIDNet-CT [15] on the other hand offers
architectural diversity, selective long-range connectivity, and
lightweight design patterns. Ref. [28] proposes Contrastive
COVIDNet which is built upon the COVIDNet [11] archi-
tecture by introducing domain specific batch normalization
layers along with a cross entropy classification and a con-
trastive loss. In [29] a custom CNN model is built with two
separate lines of forward pass and deep feature aggregation
to classify COVID and non-COVID. The network is trained
to work both on CT and X-ray data. It employs a deep feature
aggregation strategy by aggregating layer outputs from vary-
ing depths following a classifier network. ResGNet-C [30]
exploits Graph Convolution Network (GCN) [31] to perform
binary classification task using the Resnet-101 [23] extracted
features. Ref. [32] proposes an hybrid model based on deep
features and Parameter Free BAT (PF-BAT) optimized Fuzzy
K-nearest neighbor (PF-FKNN) classifier for COVID-19
prognosis.

B. COVID-19 DETECTION USING CHEST X-RAY

Although chest-CT has more sensitivity as compared to
RT-PCR [8], [9], associated cost and resource constraints
makes routine CT screening for COVID-19 detection a less
accessible solution to the third world’s teeming millions.
Therefore, digital X-ray based Covid detection is considered
an easily accessible alternative.

In [34] the authors propose a two-stage pipeline for binary
classification. In the first stage, the significant lung region
is cropped from the chest X-ray images using a bounding
box segmentation. In the second stage, a GAN inspired
class — inherent transformation network is used to gener-
ate two class inherent transformations which are then used
to solve a four-class classification problem using a CNN.
However, as the number of classes increase, the number
of generators to be trained in the second stage of this
method will increase accordingly, making it difficult to
scale for multi class classification. COVID-Net [11] lever-
aged a human-machine collaborative design strategy to pro-
duce a network architecture tailored for COVID-19 detection
from chest X-ray images. CoroNet [12] uses Xception [24]
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FIGURE 1. xViTCOS: lllustration of our proposed network for COVID-19 detection using chest radiography (CT scan/CXR
image). The input image is split into equal-sized patches and embedded using linear projection. Position embedding are
added and the resulting sequence is fed to a Transformer encoder [33].

backbone for extracting CXR image features which are classi-
fied using a multi-layer perceptron (MLP) classification head.
CovidAID [35] finetunes a pretrained CheXNet [5]. Ref. [36]
proposes a novel architecture with multiscale attention-based
generation augmentation and guidance for training a CNN
model for COVID-19 diagnosis. The multi-scale attention
features are computed from the intermediate feature maps
of a Resnet-50 [23] based feature extractor and are com-
bined with the final feature map to obtain the predictions.
Ref. [37] proposes another attention based CNN model incor-
porating a teacher-student transfer learning framework for
COVID-19 diagnosis from Chest X-ray and CT images.
CHP-Net [38] consists of three networks: a bounding box
regression network to extract bi-pulmonary region coor-
dinates, a discriminator deep learning model to predict
a differentiating probability distribution, and a localiza-
tion deep network that represents all potential pulmonary
locations. In [10] the authors propose using shape depen-
dent Fibonacci p patterns to extract features from chest
X-ray images and then apply conventional machine learn-
ing algorithms. Ref. [39] first extracts orthogonal moment
features using Fractional Multichannel Exponent Moments
(FrtMEMs). Next, the most significant features are selected
using a differential evolution based modified Manta-Ray
Foraging Optimization (MRFO). Finally a KNN classifier is
trained to distinguish COVID-19 positive cases from negative
cases.

C. TRANSFORMERS AND SELF ATTENTION IN VISION

Images can be naively represented using a sequence of pix-
els for analysis using transformers but that would lead to
huge computational expenses with a quadratic increase in
costs. This has led to a number of approximations. For
example, [40] used self attention in local neighbourhoods
of query pixels instead of performing calculation globally
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with the entire rest of the image. Such local multi head
attentions can be shown to replace convolutions ( [41], [42],
[43]). Ref. [44] proposed Sparse Transformers where scalable
approximations to global self attention are employed for
images. Ref. [45] used an alternative way of scaling attention
by applying them in blocks of varying sizes. Ref. [46] applies
full attention after extracting patches of size 2 x 2 from the
input image. The use of small patch size, however, enables the
model to be used only for small resolution images. Other than
transformers, a number of researchers have combined convo-
lutional neural networks with different forms of self attention.
Ref. [47] uses attention to augment feature maps for image
classification. A lot of work has come up where the authors
have used self attention for further processing the output of a
CNN for a number of tasks including, object detection ( [48])
image classification ( [49]), video analysis ( [50], [51]), etc.
A recent approach by [52] applies Transformers to pixel level
patches after reducing image resolution and color space. The
model named image GPT is trained like a generative model
whose representations are then fine tuned or linearly probed
for performing classification tasks.

Ill. PROPOSED METHOD

Unlike the existing methods that incorporate CNNs, we pro-
pose a vision transformer (ViT) [16] based model for auto-
mated COVID-19 screening and call it xViTCOS, illustrated
in Figure 1. Since we use xViTCOS on two chest radiography
modalities CT scan images and chest X-ray images, we refer
to them as xViTCOS-CT and xViTCOS-CXR respectively.

A. VISION TRANSFORMERS

A Vision Transformer [16] is a deep neural model that adapts
the attention-based transformer architecture [33] prevalent in
the domain of natural language processing (NLP) to make it
suitable for pattern recognition in visual image data. While
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the original transformer architecture comprises of an encoder
and a decoder, vision transformer is an encoder-only archi-
tecture. For non-sequential image analysis tasks, like image
classification, the input image, x € RHXWxC g broken
down into N image patches, xg) € RP¥PXC wherei e
{1,---N}, and each patch is of shape P x P in 2-D, C
denotes the number of channels (e.g. C = 3 for RGB images)
and N = I?;g. These patches derived from the image is
then effectively used as a sequence of input images for the
Transformer. The input patches are first flattened and then
mapped to a D dimensional latent vector through a trainable
linear projection layer, leading to the generation of patch
embeddings. Throughout its layers, the transformer maintains
a constant latent vector size of D. Similar to the [class] token
in BERT [53], a learnable embedding is embedded to the
sequence of the patch embeddings (Zg = Xcluss)- The final
transformer layer state corresponding to this class token, zg,
represents in a compact form the classification information
that the model is able to extract from the image(y). The clas-
sification head is attached to zg during both pre-training and
fine-tuning. In order to retain crucial positional information,
standard learnable 1D position embeddings are added to the
patch embeddings. The final resulting sequence is provided
as input to the encoder. During pre-training, an MLP is used
to represent the classification head and it is replaced by a
single linear layer during the fine-tuning stage. As illus-
trated in the Figure 1, the transformer encoder of a vision
transformer consists of alternating layers of multiheaded self-
attention (MSA) and MLP blocks. Layernorm (LN) is applied
before every block, and residual or skip connections after
every block. The workings of the vision transformer can be
mathematically described in Equations below:

20 = I:xclass;xll;E; X E; x,ZYE] + Epos (1
7y =MSA(N(z-1) +z-1, Vi=1---L (2)
71 =MLP (LN (z))) +z;, VI=1---L 3)

y =IN(z}) @
where E € R”OXD and E,,, € RN +DxD

B. INDUCTIVE BIAS IN ViT

Unlike CNN based models that impose inherent bias such
as translation invariance and a local receptive field, vision
transformer (ViT) [16] has much less image specific inductive
bias. This is because ViT treats an image as a sequence, hence
loses any structural and neighborhood information a CNN can
easily recognize. Although MLP layers are local and trans-
lationally equivariant, the self-attention layers are global.
The only mechanism that adds inductive bias and provides
structural information about the image to the encoder are the
position embeddings, that are concatenated with the patch
embeddings. Without those, the Vision Encoder might find
it difficult to make sense of the image patch sequence. Con-
sequently, ViT does not generalize well when trained using
insufficient amount of data. This might be a bit discouraging
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but the entire status quo changes as the size of the dataset
increases. The large size of the training dataset overshadows
the dependence of the model on inductive bias for generaliza-
tion. As can be expected, using a ViT model pretrained on a
large training dataset under a transfer learning framework on
a smaller target dataset leads to improved performance. Next,
we propose a multi-stage transfer learning strategy.

C. MULTI-STAGE TRANSFER LEARNING

A domain and a task are the two main components of a
typical learning problem. For the specific case of a supervised
classification problem, the domain, D might be defined as
the tuple of the feature space, &X', and the marginal feature
distribution, P(X), i.e. D = (X, P(X)). The task, 7T is a tuple
of label space, ), and the posterior of the labels conditioned
on features, P(Y|X), i.e. T = (), P(Y|X)). Any change in
either of the two components of a machine learning problem
would cause severe degradation in the performance of the
trained model and necessitates rebuilding the model from
scratch. Transfer Learning is a way to combat this issue.

Given a source domain, D and a corresponding task, 7,
and a target domain, D; and a corresponding task, 7, the
objective of transfer learning is to improve the performance of
amachine learning model in D; using the knowledge acquired
in Dy and 7y [54]. Transfer learning has played a significant
role in the facilitating the use of deep learning in numerous
applications [55]-[57]. In this work, we empirically demon-
strate how knowledge transfer is equally effective for vision
transformer based framework in medical image classification.

In the current problem, the target domain consists of chest
radiography image data i.e., for xViTCOS-CXR, the target
data is the COVID-19 CXR dataset and for the xViTCOS-CT
model, the target data consists of the COVIDx-CT-2A
dataset [58] with three classes — COVID-19 Pneumonia, non-
COVID-19 Pneumonia, and normal.

The first source domain Ds, that our proposed ViT
model is trained on consists of a large-scale general-purpose
image dataset, ImageNet [59]. Since effective ViT training
demands access to a sufficiently large number of data points,
we choose a model which is pretrained on ImageNet-21k [59]
(7s,) in a self-supervised manner and later finetuned on
ImageNet-2012 [60] (732) This pre-training aims to ensure
that the model learns to extract crucial but generic image
representations to classify natural images.

The underlying distribution of clinical radiographic images
is vastly different from an unconnected set of natural images
like those in ImageNet, and distributional divergence is very
high between the two domains. Hence in cases where the
target dataset is of insufficient capacity, the pre-trained ViT
model might find it highly difficult to bridge the domain
shift between the learned source domain and the unseen
target domain. However, with a sufficient number of training
examples available from the target domain, the ViT model
can overcome the gap between these two domains. Keeping
this in mind, an intermediate stage of knowledge transfer is
used in this paper to train our proposed model depending on
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TABLE 1. Summary of COVIDx CT-2A dataset [58].

Split Normal Pneumonia COVID-19 Total

Train 35996 25496 82286 143778
Validation 11842 7400 6244 25486

Test 12245 7395 6018 25658

the size of the target domain training data. The primary goal
of this stage of transfer learning is to help the ViT model,
pre-trained on a generic image domains Dg,, Ds,, to learn
chest radiography specific representations to overcome the
existing domain shift. In order to achieve this, we further
finetune the pre-trained ViT model on a large collection of
chest radiographic data (D53) [61] after replacing its existing
classification head with one suitable for the corresponding
classification task (7s;).

With the COVIDx-CT-2A dataset [58] a moderate-sized
dataset (refer to Table 1), xViTCOS-CT model was able
to overcome the domain shift and achieved state-of-the-art
performance without the need for the intermediate finetuning
stage. However, due to a limited number of COVID-19 CXR
images (refer to Table 2), an intermediate stage of knowl-
edge transfer was employed to improve the performance of
xVITCOS-CXR model. A publicly available large-scale CXR
dataset, CheXpert [61] was used, and xVITCOS-CXR was
finetuned to classify five medical conditions (Atelectasis,
Cardiomegaly, Consolidation, Edema, and Pleural Effusion)
and the case of no finding on that dataset. Following this, the
existing classification head of the ViT network was replaced
by a new head suited for the particular target task, i.e.,
COVID-19 detection, and the model was further finetuned
on the target domain. Refer to supplementary material for
an ablation study to understand the impact of multi-stage
transfer.

D. IMPLEMENTATION DETAILS
A number of Vision Transformers architectures have been
proposed in literature. In this paper we have tested our algo-
rithm on architectures proposed in [53] and [16] over the task
of classification on the Chest X-Ray dataset. A detailed study
on all the architectures tested, namely ViT-B/16, ViT-B/32,
ViT-L/16 and ViT-L/32, and the results obtained has been
added in the supplementary. On the basis of classification
performance and computational expense, we choose the
ViT-B/16 network as the most suitable amongst those tested
for further experimentation. For further details, please refer to
the Supplementary. ViT-B/16 architecture has the following
configuration- Patch size: 16 x 16, Fraction of the units
to drop for dense layers (Dropout rate): 0.1, Dimensions
of the MLP output in the transformers: 3072, Number of
transformer heads: 12, Number of transformer layers: 12,
Hidden size: 768. The model parameters are initialized with
the parameters of a model pretrained on ImageNet-21k [59]
and fine-tuned on ImageNet-2012 [60].

While training xViTCOS-CXR, for the intermediate
finetuning step using CheXpert [61], we use standard
binary cross-entropy loss. This is because the classification
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TABLE 2. Summarized description of CXR dataset.

Split Normal Pneumonia COVID-19 Total
Train 1079 3106 1726 5911
Validation 270 777 432 1479
Test 234 390 200 824

task using CheXpert is a multi-label classification prob-
lem. Finally, while finetuning in the target COVID-19
CXR images, categorical cross-entropy loss is used to
solve a multi-class classification problem. While training
xViTCOS-CT, we utilize categorical cross-entropy. We use
Keras [62] with Tensorflow [63] backend and vit-Keras.!

IV. EXPERIMENTS AND RESULTS

A. DATASETS

Some of the existing works validate their methods using
private datasets [30], and several other works [12], [14],
[15], [35] combine data from different publicly available
sources. While combining data from different public repos-
itory, researchers should be careful to avoid duplication as
a contributor might upload the same image to many of the
repositories. Another interesting way to mitigate the issue of
data scarcity is through generative data augmentation where a
neural generative framework [64]-[67] is trained to generate
novel data samples. However in this work, we use the datasets
described in the next section. We have rerun the codes of the
baseline models using same dataset and same split to ensure
a fair comparison.

1) CT SCAN DATASET

To demonstrate the efficacy of xViTCOS-CT, we use
COVIDx CT-2A dataset [58], derived from several public
repositories [68]-[75]. This dataset contains 194,922 CT
scans from 3,745 patients across the globe with clinically
verified findings. Table 1 summarizes the important statistics
of COVIDx CT-2A dataset.

2) CHEST X-RAY DATASET
To benchmark xViTCOS-CXR against other deep learning
based methods for COVID-19 detection using CXR images,
we construct a custom dataset consisting of three cases: Nor-
mal, Pneumonia, and COVID-19. Like in [12], [35], Normal
and Pneumonia CXR images were obtained from the Kaggle
repository ‘Chest X-Ray Images (Pneumonia)’ [76], which is
derived from [77]. COVID-19 images were collected from
the Kaggle repository ‘COVIDx CXR-2’ [78], which is a
compilation of several public repositories [79]-[84].
COVIDx-CXR-2 [78] provides only Train-Test split of
the data. To automatically select the best model based
on validation-set performance, we split Training set in
80 : 20 ratio as train and validation set. This would have
caused huge class imbalance in the validation set as ‘Chest
X-Ray Images (Pneumonia)’ [77] contains only 8 images per
class in the validation set. Therefore, we combine the training
and validation split and reconstruct the training and validation

1 https://github.com/faustomorales/vit-keras
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TABLE 3. Comparison of performance of xViTCOS-CT on CT scan dataset against state-of-the-art methods.

Method Class Label Precision Recall Fl-score Specificity NPV  Overall Accuracy

Normal 0.920 0.989 0.954 0.922 0.989
Pneumonia 0.963 0.799 0.873 0.987 0.924

Resnet + Location Attention [25] COVID-19 0.906 0.955 0.930 0.969 0.986 0.932
Weighted Avg. 0.929 0.926 0.925 0.952 0.970
Macro Avg. 0.930 0914 0.919 0.959 0.966
Normal 0.958 0.987 0.973 0.957 0.986
Pneumonia 0.981 0.805 0.884 0.989 0.942

COVIDNet-CT [15] COVID-19 0.906 0.988 0.945 0.960 0.995 0.949
Weighted Avg. 0.952 0.935 0.941 0.967 0.975
Macro Avg. 0.948 0.927 0.934 0.969 0.974
Normal 0.969 0.989 0.979 0.971 0.990
Pneumonia 0.951 0.982 0.966 0.979 0.992

Teacher-student Attention [37] COVID-19 0.957 0.877 0.915 0.987 0.963 0.964
Weighted Avg. 0.961 0.961 0.960 0.977 0.984
Macro Avg. 0.959 0.949 0.953 0.979 0.982
Normal 0.942 0.974 0.958 0.946 0.975
Pneumonia 0.951 0.855 0.901 0.982 0.944

ResGNet-C [30] COVID-19 0.910 0.961 0.934 0.971 0.987 0.939
Weighted Avg. 0.937 0.937 0.936 0.962 0.957
Macro Avg. 0.934 0.930 0.931 0.966 0.952
Normal 0.997 0.990 0.993 0.997 0.991
Pneumonia 0.971 0.982 0.977 0.988 0.993

xViTCOS-CT (Proposed) COVID-19 0.960 0.961 0.961 0.988 0.988 0.981
Weighted Avg. 0.981 0.981 0.981 0.992 0.991
Macro Avg. 0.976 0.978 0.977 0.991 0.991

split in 80 : 20 ratio. Table 2 summarizes split-wise image
distribution. Note that, we have kept the test split intact in
both the datasets to prevent patient-wise information leakage
as multiple images for the same patient could be present in
the dataset.

B. DATA PREPROCESSING AND AUGMENTATION

1) CT IMAGES

COVIDx CT-2A dataset [58] provides bounding box anno-
tations for the body regions within the CT images. To stan-
dardize the field-of-view in the CT images, we crop the
images to the body region using this additional informa-
tion. Next each cropped image is resized to a fixed size
of 224 x 224 pixels. To improve generalizability of the
model, we augment the training data on the fly by apply-
ing random affine transformations such as rotation, scal-
ing and translation, random horizontal flip and random
shear.

2) CXR IMAGES

In the compiled dataset, the chest X-ray images are of var-
ious sizes. To fix this issue, all the images were resized to
a fixed size of 224 x 224 pixels. Again as in the case of
CT images, to improve the generalizability of the model,
we apply the same sets of augmentation techniques (refer to
Section IV-B.1). In addition, we apply random zoom in and
zoom out, and random channel shift.

C. QUANTITATIVE RESULTS

To quantify and benchmark the performance of xViTCOS,
we compute and report Accuracy, Precision (Positive Predic-
tion Value), Recall (Sensitivity), F1 score, Specificity, and
Negative Prediction Value (NPV) as defined and compared
in the standard literature such as [14], [32].
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FIGURE 2. Confusion Matrix: The horizontal and vertical axis consists of
the ground true and predicted labels, respectively.

1) xViTCOS-CT

Table 3 presents the overall accuracy of xXViTCOS-CT on the
test split of COVID-CT-2A dataset [58]. As can be observed,
the proposed method achieves the best accuracy score of
98.1%, surpassing the current state of art methods. Next,
we discuss the precision, recall, specificity, PPV, NPV, and
F1-scores attained by the model on test COVID CT images
and interpret their significance in determining the classifica-
tion caliber of the model. From table 3, it can be observed that
xViTCOS-CT achieves a high value of recall or sensitivity at
96%, implying that a small proportion of pneumonia cases
caused due to COVID-19 are incorrectly classified as hav-
ing non-COVID-19 origin. This implies a significantly low
number of false-negative cases, which is a highly sought-after
characteristic in a medical data classifier as in such cases,
a false negative situation may lead to denial or delay of
treatment to a person genuinely infected by the disease. The
proposed method also attains a high precision or positive
predictive value of 96% for COVID-19 cases, implying a little
chance of the model classifying a non-COVID case as having
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TABLE 4. Comparison of performance of xViTCOS-CXR on chest X-ray dataset against state-of-the-art methods.

Method Class Label Precision Recall Fl-score Specificity NPV  Overall Accuracy

Normal 0.932 0.876 0.903 0.974 0.952
Pneumonia 0.933 0.964 0.948 0.937 0.967

InceptionV3 [85], [86] COVID-19 0.990 0.995 0.992 0.997 0.998 0.946
Weighted Avg. 0.947 0.947 0.946 0.962 0.970
Macro Avg. 0.952 0.945 0.948 0.969 0.972
Normal 0.812 0.923 0.864 0.915 0.967
Pneumonia 0.953 0.941 0.947 0.958 0.947

CoroNet [12] COVID-19 1.000 0.865 0.927 1.000 0.958 0.917
Weighted Avg. 0.924 0.917 0.919 0.956 0.955
Macro Avg. 0.922 0.910 0.913 0.958 0.957
Normal 0.826 0.918 0.870 0.923 0.966
Pneumonia 0.950 0.882 0.915 0.958 0.900

CovidNet [14] COVID-19 0.985 0.995 0.990 0.995 0.998 0.919
Weighted Avg. 0.923 0.920 0.920 0.957 0.943
Macro Avg. 0.920 0.932 0.925 0.959 0.955
Normal 0.913 0.902 0.908 0.966 0.961
Pneumonia 0.918 0.974 0.945 0.922 0.976

Teacher Student Attention [37] COVID-19 0.989 0.885 0.934 0.997 0.964 0.932
Weighted Avg. 0.934 0.932 0.932 0.953 0.969
Macro Avg. 0.940 0.920 0.929 0.962 0.967
Normal 0.954 0.901 0.927 0.983 0.962
Pneumonia 0.931 0.974 0.952 0.935 0.975

MAG-SD [36] COVID-19 0.989 0.965 0.977 0.996 0.988 0.951
Weighted Avg. 0.952 0.951 0.951 0.963 0.974
Macro Avg. 0.958 0.947 0.952 0.971 0.975
Normal 0.959 0.902 0.929 0.985 0.962
Pneumonia 0.945 0.974 0.959 0.949 0.976

xVITCOS-CXR (Proposed) COVID-19 0.990 1.000 0.995 0.997 1.000 0.960
Weighted Avg. 0.959 0.960 0.959 0.971 0.978
Macro Avg. 0.965 0.959 0.961 0.977 0.979

a COVID-19 origin. However, the usefulness of our proposed COVID-CT-2A COVID-19 CXR

method lies in the fact that it achieves the highest F1 scores
for all the classes, implying that in terms of both precision
and recall, the proposed method is the most balanced amongst
all the baseline models. Also, it is well able to differentiate
between the normal and Pneumonia cases of patients as well.
Similarly, we can see that the proposed model attains high
specificity and NPV values of 98.8% for the COVID-19 case,
implying that false positives are also very low. This is a useful
characteristic in clinical scenarios since the model correctly
rejects all the negative cases, facilitating efficient utilization
of limited resources.

The prowess of the proposed model can be further under-
stood from examining the confusion matrix (Figure 2). The
proposed model can distinguish the healthy patients from
both covid and non-covid pneumonia cases very efficiently,
with an accuracy of almost 99%. Particularly, out of a total
of 12245 normal cases, 12120 have been classified correctly,
while 11 (0.09%) and 114 (0.93%) cases have been wrongly
classified as non-COVID pneumonia and COVID pneumonia
classes, respectively. Another interesting point to note here
is that while 114 normal cases have been misclassified as
COVID-19 and 204 COVID-19 cases have been assigned
the non-COVID pneumonia label; the classifier has assigned
only 31 COVID-19 originated pneumonia cases a normal
class. This implies that the proposed method can distinguish
the normal cases from the diseased cases.

2) xViTCOS-CXR
The observations regarding the performance of
xViTCOS-CXR compared to its contemporaries are on the
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FIGURE 3. t-SNE plots of penultimate layers of xViTCOS.

same lines as that of xViTCOS-CT, if not better. In terms of
classification accuracy, x ViTCOS-CXR achieves an accuracy
of 96%, outperforming the baseline methods by a consider-
able margin as can be seen from Table 4. Further, it can be
observed that xViTCOS-CXR achieves high recall (100%)
and precision values (99%) on the COVID-19 cases, implying
that the number of occasions on which the proposed model
classified a COVID-19 model as a non-COVID-19 model
or vice-versa is extremely low. Examining the entries of
Table 4, one can observe that the proposed method is the
most balanced in terms of precision-recall when compared
with the state-of-the-art baselines. Similarly, we can see that
the proposed model attains high specificity and NPV values
of almost 100% for the COVID-19 case implying that the
number of false positives is almost negligible. This is a
valuable characteristic in clinical scenarios since it allows for
rapid identification of patients who do not have COVID-19.
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FIGURE 4. Visualization of different cases (normal, Pneumonia, COVID-19) considered in this study and their associated critical factors in decision making
by XxViTCOS as identified using the explanability method laid out in [87] for transformers [16]. In each subfigure, the left figure presents the input to
XViTCOS and its ground truth label; the right figure presents the predicted probabilities for each class and highlight the factors critical corresponding to
the top predicted class. Figure 4a, 4b and 4c corresponds to CT scan and Figure 4d, 4e and 4f corresponds to CXR images.

Analysing figure 2b, it can be seen that the class-wise
accuracy of COVID-19 is 100%, i.e., all the ground truth
COVID-19 cases have been classified as COVID-19, imply-
ing that the number of false negatives is zero. This confirms
the efficacy of the proposed model in distinguishing between
COVID and non-COVID cases.

D. QUALITATIVE RESULTS

1) VISUALIZATION OF FEATURE SPACE

To visually analyze how clustered the feature space is, we per-
form a t-SNE visualization of the penultimate layer’s features
for both the models using the test splits. As can be seen
from Figure 3, the features in the penultimate layer clusters
distinctively for the three different classes.

2) EXPLAINABILITY
For qualitative evaluation of xViTCOS we present sam-
ples of CXR images and CT scans along with their ground
truth labels and corresponding saliency maps along with
the prediction in Figure 4. In order to analyse the explain-
ability properties of our proposed method, we use the
Gradient Attention Rollout algorithm as outlined in [87].
Further details can be found in SectionI of the sup-
plementary document. Figure 4a, 4b and 4c presents CT
scans of normal, Pneumonia and COVID-19 cases respec-
tively; Figure 4d, 4e and 4f presents CXR images of normal,
Pneumonia and COVID-19 cases respectively.

Report corresponding to Figure 4b as interpreted by a
practicing radiologist: ground glass opacities, consolidation
and secondary interlobar septal thickening, in bilateral lung,
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Normal: 0.03%
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FIGURE 5. A case of failure. xViTCOS-CT fails to predict the ground truth
non-COVID-19 Pneumonia with confidence as it predicts non-COVID-19
Pneumonia with ~ 50% probability and COVID-19 with ~ 50% probability.
This might happen as the findings on chest imaging in COVID-19 are not
exclusive and overlap with many other type of infections [88]. In such
cases, human expert intervention is necessary. For a detailed discussion
refer to Section V.

more extensive in right. XViTCOS-CT correctly highlighted
these suspected regions. In Figure 4c xViTCOS-CT localized
suspicious lesion regions exhibiting ground glass opacities,
consolidation, reticulations in bilateral postero basal lung
with subpleural predominance. In Figure 4e Patchy air space
opacities noted in right upper and midzone matches the
regions highlighted by xViTCOS-CXR. In Figure 4f, radiol-
ogist’s interpretation is: thick walled cavity in right middle
zone with surrounding consolidation. xViTCOS-CXR is able
to correctly identify it. For the cases, where no abnormality is
detected (Figure 4a and 4d), xViTCOS focuses on the entire
lungs and chest respectively to make a final decision.
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V. CONCLUSION

In this study, we introduce a novel vision transformer based
method, xViTCOS for COVID-19 screening using chest
radiography. We have empirically demonstrated the efficacy
of the proposed method over CNN based SOTA methods as
measured by various metrics such as precision, recall, F1
score. Additionally, we examine the predictive performance
of xViTCOS utilizing explanability-driven heatmap plot to
highlight the important factors for the predictive decision it
makes. These interpretable visual cues are not only a step
towards explainable Al, also might aid practicing radiolo-
gists in diagnosis. We also analyzed the failure cases of
our method. Thus, to enhance the effectiveness of diagnosis
we suggest that xViTCOS be used to complement RT-PCR
testing. In the next phase of this project, we aim to extend
this work to automate the analysis of the severity of infection
using vision transformers.
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