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Abstract

Increasing frequency of extreme winter storms has resulted in costly damages and a disrup-

tive impact on the northeastern United States. It is important to understand human mobility

patterns during such storms for disaster preparation and relief operations. We investigated

the effects of severe winter storms on human mobility during a 2015 blizzard using 2.69 mil-

lion Twitter geolocations. We found that displacements of different trip distances and radii of

gyration of individuals’ mobility were perturbed significantly. We further explored the charac-

teristics of perturbed mobility during the storm, and demonstrated that individuals’ recurrent

mobility does not have a higher degree of similarity with their perturbed mobility, when com-

paring with its similarity to non-perturbed mobility. These empirical findings on human mobil-

ity impacted by severe winter storms have potential long-term implications on emergency

response planning and the development of strategies to improve resilience in severe winter

storms.

Introduction

Recent developments in information technology have provided an unprecedented amount

of crowdsourced spatial-temporal data to study human mobility [1–5]. Findings about daily

patterned human movements have fundamentally changed our understanding of human

mobility at varying spatial scales. However, human mobility patterns under perturbed states,

such as in natural disasters, also require a deeper understanding in order to prepare for unfa-

miliar conditions in the future [6]. Scholars in the disaster research area have identified scal-

ing laws and evaluated the predictability of human mobility during and after extreme events

using mobility patterns from non-perturbed states. Lu, et al. [7] used approximately one year

of mobile phone data from 1.9 million users, and found that population movements follow-

ing the Haiti earthquake had a high level of predictability, and destinations were correlated

with normal-day mobility patterns and social support structure. Similar results have been

found in the research of Song, et al. [8] on human mobility following the Great East Japan

Earthquake and Fukushima nuclear accident. A study by Wang and Taylor [5] showed that

human mobility was significantly perturbed during Hurricane Sandy but also exhibited high
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levels of resilience. A more recent study on multiple types of natural disasters revealed a

more universal pattern of human mobility, as well as the limitations of urban human mobil-

ity resilience, under the influence of multiple types of natural disasters [9]. This study also

uncovered that resilience could be significantly impacted by more powerful disasters, which

could force urban residents to adopt entirely different travel patterns from their norms.

Other scholars have conducted longitudinal studies on the relationship between large-scale

natural disasters and long-term population mobility. For example, Gray and Mueller [10]

investigated the effects of flooding and crop failures on local population mobility and long-

distance migration over 15 years in rural Bangladesh. Their results revealed that natural

disasters had significant effects on long-term population mobility but mobility did not uni-

versally serve as a post-disaster coping strategy.

Unlike other acute disasters (e.g., earthquakes, hurricanes, and floods), severe winter

storms may not force residents to evacuate from their homes to safer places on a large scale,

which may result in different perturbation patterns. Yet, relatively few studies have examined

the relationship between winter hazards and human mobility in great detail. Over the past

century, severe winter storms continue to occur with greater frequency in the eastern two-

thirds of the contiguous United States [11]. The increased damages from these storms has

resulted in costly and disruptive effects on people’s daily lives. Large accumulations of snow-

fall and ice can incur catastrophic effects on infrastructure systems [12], specifically, electri-

cal system emergencies and disturbances, and transportation delays and closures [13], and

further lead to communications breakdowns and public health issues. Studies in the trans-

portation research area have examined impacts of snowstorms on traffic based on limited

traffic modes at small scales. For example, snowstorms have been found to impact different

dimensions of traffic, e.g. traffic demand, traffic safety, traffic operations and flow [14]. The

impact varies by trip purposes [15, 16] and distances [14], types of vehicles, different areas

[17], and time [18]. In terms of trip purposes, results from a survey [16] indicate that snow

and stormy weather have the least impact on commuting (work, school) behavior: the work

and location were the least frequently changed and the main change in commuting behavior

was in timing of the trips; while for shopping trips and leisure tips, more than half of the

responds chose to cancel the trip and even more changed route and location. However, it is

still unclear what the quantitative relationship between peoples’ recurrent mobility (charac-

terized by their frequent visited places) and perturbed mobility during the winter storm is.

In addition to traffic, heavy snow has been shown to have a negative impact on foot travel

frequencies [19]. However, these empirical studies based on a single transportation mode at

a small scale do not represent the population well, and, in turn, are unlikely to reveal the

overarching impact of large-scale storms. The severity of the damages from winter storms

calls for innovative research, particularly a fundamental understanding of human behaviors

and activity patterns with aggregated data to achieve more effective snowstorm preparation

and to build more resilient cities.

Based on the findings of studies on human mobility in disasters and the impact of snow-

storms on traffic, in this paper we tested four hypotheses: Hypothesis 1: Individuals’ displace-

ments of different lengths can be significantly perturbed by a severe winter storm and the

perturbation varies among different ranges of distances and distinct days of a week; Hypothe-

sis 2: Human mobility patterns can be affected by a severe winter storm, as measured by radii

of gyration and the shifting distance of center of mass; Hypothesis 3: Individuals’ frequently

visited locations can better quantify their mobility patterns during a severe winter storm than

non-perturbed patterns during normal days.
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Methods

We selected the January 2015 severe winter storm in the northeastern United States for the

seasonality and high frequency of this type of damage in this area and its large-scale impact.

This severe storm caused a snow emergency to be declared by the Federal Emergency Man-

agement Agency [20] during January 27 to 29 in six states, including New Hampshire, Mas-

sachusetts, Connecticut, Rhode Island, Maine and New Jersey. This winter hazard brought

heavy snow to southern New England with blizzard conditions to much of Rhode Island and

Massachusetts, beginning during the day on January 26 and lasting into the early morning

hours of January 27. We narrowed the area within the spatial bounding box coordinates of

Massachusetts due to the population distribution, and the statewide impact (latitude: 41.187

to 42.887, and longitude: -73.508 to -69.859). The storm duration was from January 26 to 28

in this area. Much of this affected area received two to three feet of snow and experienced

severe winds with gusts over 70 mph [21]. The Category of Regional Snowfall Index (RSI,

which estimates societal impacts of snowstorms within a region’s borders) [22] for this storm

has an Index value of 6.158 [23], which indicates a major snowstorm. A statewide driving

ban was issued and MBTA public transportation service was suspended, thousands of flights

were canceled, and schools and activities observed weather-related cancellations for one or

more days [21].

The raw data for this study is comprised of geotagged Tweets collected from a Twitter

Streaming API [24]. We use geotagging as the only filter to collect real-time Tweets. Our data

collection and usage comply with the Twitter Terms of Service. As 1.24% of Tweets are geo-

tagged [25] and the streaming API can collect 1% of Tweets, the database of this study is

representative in terms of geotagged Tweets. The Twitter geotags are based on GPS Standard

Positioning Service which offers a worst-case pseudo-range accuracy of 7.8 meters with 95 per-

cent confidence, and the positional accuracy are affected by weather and device factors [26].

The studied time period includes four pre-storm weeks, a during-storm week, and a post-

storm week—from December 29, 2014 to February 8, 2015. The data volume for each day can

be found in S1 Table. In total, 2,691,346 Tweets were collected over the 42 days and the average

daily data volume was about 64,080 Tweets.

Results

Daily displacements

To explore if severe winter storms can perturb people’s daily trajectories, displacements of

each distinct user during thirty-five 24-hour periods over January 5 to February 8, 2015 (East-

ern Time) were calculated and studied. Displacement in our studies is defined as the Haversine

distance between two consecutive geolocations of an individual within a day. To avoid the

inaccuracy of GPS services [26], we exclusively focused on displacements which are longer

than eight meters. Six groups of distances were set, including 8-100 meters (r1), 100-500 meters

(r2), 500-1,000 meters (r3), 1-5km (r4), 5-10km (r5), and 10km and more (r6). Data volume of

displacements per day varied from 12,576 to 70,565 (see S2 Table). Percentages of the number

of displacements within the six sets during pre-storm weeks and the storm week were then

computed and plotted for comparison (see Fig 1).

The storm week (Week 4) exhibits a clear perturbation pattern for each group of distances.

The four plots for normal weeks (Week 1, 2, 3, 5) exhibiting regularity are comparable within

each group of distances. For example, during the normal weeks, the average percentages of

short trips (r1) decreases from Monday (72.92%) to Friday (60.81%), and increases from Friday

to Sunday (74.38%). However, during the storm week, heavy snow incurs more short trips and
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the percentage of short trips (r1) achieves the peak at 85.23% on Tuesday (the storm day) and

decreases sharply to 60.20% on that Friday. It finally returns to a normal level (76.86%) on

Sunday. In contrast, the long trips (r6) experience a decreasing trend to its lowest percentage

on Tuesday (2.18%) compared with the increasing trend from Monday to Friday under

Fig 1. Impact of the severe winter storm on percentages of trips in different distance ranges. (a-f) Points in each line represent

percentages of a trip on distinct days in a week. The star points in blue lines refer to percentages during the severe winter storm week (Week

4), when the Monday, Tuesday and Wednesday were the exact three-day duration of the storm. Weeks 1-3 are the weeks before the storm

and Week 5 is the week after the storm. Counts of displacements in all ranges can be found in S2 Table.

https://doi.org/10.1371/journal.pone.0188734.g001
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normal circumstances. It rebounds to its highest value of 7.91% on Friday. Trips of other dis-

tance ranges also experienced substantial perturbation during the storm.

To quantitatively examine the observations from Fig 1, we adopted binary logistic regres-

sion to check if the severe winter storm statistically affected trips of different ranges. We set

storm and non-storm statuses as binary explanatory variables (1 and 0 respectively), and per-

centages of trips of a distinct category as response variable. The coefficient and significance

values can be found in S3 Table. We found that percentages of longer trips (i.e. r4, r5, and r6)

and the shortest trip (r1) were statistically significantly influenced by the winter storm

(p-value< 0.05). However, percentages of r2 and r3, although obvious decreased from the

Monday to Tuesday during the storm week, were not statistically significantly changed by the

snow storm over the three day period.

To arrive at a detailed understanding of the daily displacements, we further fitted daily dis-

placements from January 5 to February 8 into distributions including lognormal, exponential,

and power law, using the Python package Powerlaw [27]. Lognormal distribution (Eq (1)) best

characterized their distributions based on the loglikelihood ratio and the corresponding value.

We plotted the complementary cumulative distribution of displacements for empirical data

and log-normal fitted data according to different days in a week in Fig 2.

PðxÞ �
1

xs
ffiffiffiffiffiffi
2p
p e�

ðInx� mÞ2

2s2 ð1Þ

The results of fitting and comparisons with other distributions are all included in S4 Table.

For the fitted parameters, the values of mean (μ) in all fittings are in the range 7.452±0.560,

while January 27 has the smallest mean value of 4.627. However, all the snowstorm days and

the following days have relatively smaller mean values than normal days. The values of stan-

dard deviation (σ) in all fittings are in the range of 2.077±0.239 except for the most severe day

of the storm, January 27, with the highest value of 3.232 and the following Monday (February

2) with value of 2.566, which indicates more differences among frequencies of different-length

displacements. The displacements decay faster on that Monday perhaps because fewer people

tended to travel longer distances due to the severe snow storm.

Both the results of the logistic regression and the scaling parameters from fitting log-normal

distribution show that the severe winter storm has significantly impacted displacements, and

the perturbation varies among distinct days of a week. Therefore, we find support for Hypoth-

esis 1.

Radii of gyration

Radii of gyration (rg), a measurement of object movement from physics, has been widely used

to quantify the size of trajectory of individuals since the study of Gonzalez, et al. (2008) [2].

To achieve a more nuanced understanding of the perturbation of human mobility patterns,

we computed the daily rg of each distinct user from January 12 to February 8 to identify the

change of daily radii of gyration over time. We adopted the formula in Eq (2) [9] to calculate

the rg of each distinct individual in the data set.

rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn
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2r � sin� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2
;k � ;c

2

� �
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φk � φc

2

� �
s !" #v

u
u
t ð2Þ

Where n is the total frequency of visited locations of one individual, k is each location vis-

ited by the individual during a certain period, c is the center of mass of trajectories, ; is the lati-

tude, and φ is the longitude.
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Fig 2. Complementary cumulative distribution function (CCDF) of displacements for empirical data and log-

normal fitted data. (a-g) Graphs show the distributions of displacements from Mondays to Sundays during the studied

weeks. The dashed lines in each graph represents the CCDF for empirical data, while the solid lines refer to the CCDF

for log-normal fitted data. Blue lines represent the days in the storm-affected week, and other grey lines refer to days

during normal weeks. The daily displacement distribution is well fitted with lognormal distribution.

https://doi.org/10.1371/journal.pone.0188734.g002
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To minimize the variance among distinct days in a week and to better reflect the influence

of the severe winter storm, we computed rg based on a Monday, Tuesday and Wednesday

(MTW-based rg) which were the three days (January 26 to 28) experiencing the most substan-

tial effects of the winter storm. We also computed four sets of rg for four MTWs in consecutive

weeks from December 29, 2014 to January 25, 2015, before the storm. We filtered users to

make sure each distinct user had at least two geolocations during each three-day period. This

resulted in 3,743 distinct users with at least ten entries over the 15 days, and 95.18 average

geotags per person. The total entries transmitted by the 3,743 users were 356,164, including

75,179 storm-day locations and 280,985 normal-day locations. We used Quantile-Quantile

plots (also called Q-Q plots) to compare the distributions of MTW-based rg among four pre-

storm normal weeks and the storm week (Fig 3). The deviations between different pairs of

MTW were quantified with a two-sample Kolmogorov-Smirnov test. The statistics and p-val-

ues can be found in S5 Table. The empirical distribution of MTW-based rg during the snow

storm week and during normal weeks has the largest value of deviation comparing with devia-

tions between other pairs of distributions.

We further computed the daily rg of each distinct user from January 12 to February 8 to

identify the change of daily radii of gyration for the week before, during and after the winter

hazard. We fitted the daily rg to different distributions and found that truncated power law
provides a better approximation of daily rg than exponential and log-normal distributions. All

the fits pass the Kolmogorov-Smirnov test for goodness of fit. The results can be found in S6

Table.

We used the scaling parameter (α) to evaluate the human mobility pattern as well as the per-

turbation duration. For the whole six weeks, α = 1.62 ± 0.17(mean±standard deviation), which

is not far from the values of the scaling parameter identified in former studies [1, 2, 5]. For the

four pre-storm weeks without any snow, α = 1.63 ± 0.05 (mean±standard deviation), which

demonstrates a steady mobility pattern. The stable pattern also lasts until the beginning two

days of the snow (January 26 and 27), however, α experiences its first peak at 1.78 on January

28, indicating more spread-out frequencies of all displacements. The values return back to a

normal range in the next two days, but drop to the lowest points (1.00 and 1.41) in the week-

ends after the storm, which indicates a substantially changed mobility pattern. This may be

caused by the increasing needs of individuals to take longer-distance trips to undertake activi-

ties that would have normally occurred in the weekdays when the heavy snow caused inconve-

nience for travel. Moreover, the relatively higher values of scaling parameters starting from the

Thursday in the post-storm week may have been caused by the accumulation of snow on non-

consecutive days (February 2, 3, 6, and 8) in some of the studied geographical area following

the severe storm. Due to the severe winter storm, the snow depth examined in most areas

included in this study exceeded ten inches [19]. The accumulated snow may have been the

cause of the perturbed mobility patterns. Based on these results, we find support for Hypothe-

sis 2.

Shifting distance of center of mass

We computed the shifting distance of the center of mass (ΔdCM) to quantify the change of

mobility pattern. The average center of mass of distinct individuals under four normal statuses

and one in the snowstorm period were calculated separately. The ΔdCM was the shifting dis-

tance of the average center of mass from the normal state to the perturbed snowstorm state. Eq

(3) was employed to calculate the shifting.

DdCM ¼

�
�
�r*S

CM � r*N
CM

�
�
� ð3Þ
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Fig 3. Comparison of empirical distributions of MTW-based between normal status and disaster status based on

Quantile-Quantile plot. (a-e) These plots show a plot of the quantiles of the five data sets of MTW-based radii of gyration against

the quantiles of the theoretical data set distributed as standard normal. The referenced straight lines pass through the first and

third quartiles. MTW5 refers to the storm affected days. Its curved line and reference line show an obvious deviation from lines of

other sets.

https://doi.org/10.1371/journal.pone.0188734.g003
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Where r*S
CM is the average center of mass of a movement trajectory during the storm days,

and r*N
CM is the average center of mass during the first four sets of Monday, Tuesday and

Wednesday.

The truncated power law distribution was found to be the best distribution of ΔdCM com-

pared to lognormal and exponential distributions Eq (4). The parameters were obtained using

the KS fit method. Fitting and comparison results can be found in Table 1.

PðDdCMÞ / Dd� 1:3735
CM e� 0:7396DdCM ð4Þ

Relationship between perturbed mobility and recurrent mobility

The mobility patterns of individuals are dominated by their recurrent movement between a

few primary locations [28, 29] and have a high predictability [7, 30, 31]. These most frequently

visited locations include home, work, and school, along with several less active subsidiary loca-

tions [32, 33]. To examine if most frequented locations (MFLs) can quantify human mobility

patterns under the severe winter storm as well, we compared the radii of gyration of MFLs

(rMFLs
g ) with both rn

g (normal status) and rs
g (storm status) of each distinct individual. We

defined the MFLs as the centroids of different clusters. Only users with at least two MFLs (two

clusters) during normal days and at least two geolocations in a day under storm status were

studied. MFLs of each distinct user were extracted from their four-week trajectories before the

blizzard utilizing the DBSCAN algorithm. We set the required two input parameters for the

clustering as follows: the maximum search radii was set as 20 meters, and the minimum num-

ber of points to form a cluster was set as two. The initial settings are based on the accuracy of

the Twitter geotags, and the sensitivity analysis results on distance parameters of DBSCAN for

Twitter data as identified in the study [26]. The MFLs of distinct individuals were then ranked

according to their visitation frequencies, and MFLs with the same visitation frequencies have

different but consecutive rankings.

To quantify the human mobility pattern characterized by MFLs, we adopted the definition

of the k-radii of gyration rðkÞg [33], which is the radii of gyration of k-th MFLs of an individual.

The comparisons between rðkÞg and rs
g allows us to quantify the correlations between k-th MFLs

and mobility pattern during the winter storm. We plotted the scatter graphs to observe the cor-

relations with the point density which is colored from blue to red (Fig 4). We used Pearson

correlation coefficient to quantify the strength of the correlation between rðkÞg and rs
g . The value

of Pearson correlation coefficient r and its corresponding p value are shown in Table 2. The p
value is less than 0.01 for all comparisons, which indicates strong statistical significance. r is

positive for each case. It ranges from 0.760 to 0.923 for the comparisons between rn
g and rðkÞg ,

and 0.161 to 0.404 for the comparisons between rs
g and rðkÞg (k = 2,. . .,8). With the increasing

value of k, the radii of gyration of MFLs presents a stronger correlation with both rn
g and rs

g .

However, by comparing the correlation coefficient r for both comparisons (rn
g and rðkÞg , and rs

g

and rðkÞg ) with the same k value, we found that the MFLs cannot characterize human mobility

patterns during the severe winter storm better comparing with the higher similarity degree

Table 1. Truncated power law fitting and comparison results of ΔdCM.

β Value λ Value κ Value (m) KS-test Lognormal Comparison p-value Exponential Comparison p-value

1.373 0.740 0.027 0.013 47.807 1.452e-30 1441.284 3.504e-55

https://doi.org/10.1371/journal.pone.0188734.t001
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Fig 4. Comparisons between rsg and rðkÞg . (a-g) The scatter plots compared the correlation between rðkÞg and rsg
for k = 2, 3 . . . 7, 8 separately. Colors from blue to red represent the point density. With the increase of k, the

radii of gyration of MFPs shows a stronger correlation with rsg significantly based on the increasing value of

Pearson r.

https://doi.org/10.1371/journal.pone.0188734.g004
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between recurrent mobility and mobility during the normal days. Therefore, Hypothesis 3 is

rejected.

Discussion

Previous research has found that natural disasters, e.g. hurricanes, floods and earthquakes, can

cause significant impact on human mobility patterns [5–10]. We extend this research to severe

winter storms showing that human mobility patterns are impacted in this different context.

The results show that the severe winter storm caused significant perturbation on displace-

ments in various ranges including short trips and long trips, which provide support to Hypoth-

esis 1. The numbers of the shortest trips increased significantly while other longer trips

decreased significantly. Similar findings have been found in single-mode transportation stud-

ies [14, 17–19]. This research builds upon these studies by examining large-scale empirical

geo-temporal data, which may provide a more general perspective on human mobility. The

high-accuracy geographical data also help to reveal specific impacts of a winter storm on dis-

placements of different length. By investigating distribution of daily displacements over nearly

one month, we found that daily displacements can be best approximated with the lognormal

distribution under both normal and perturbed states. This result is consistent with the findings

of Zhao, Musolesi [34] and Alessandretti, et al. [35], which focused on a normal, steady state

mobility pattern. Parameters of the fitted lognormal distribution further help to examine the

first hypothesis and the changed values over phases can signal the effect of the natural disaster.

The prediction of Hypothesis 2 that human mobility patterns would be affected is also sup-

ported: To minimize the variance between weekdays and weekends, we investigated distribu-

tions of radii of gyration on a Monday-Tuesday-Wednesday basis and distributions of daily

radii of gyration. Distributions of both types of radii of gyration reflect the perturbation on

mobility patterns caused by the severe storm. For Monday-Tuesday-Wednesday based radii

of gyration, two-sample Kolmogorov-Smirnov tests uncovered the largest deviations between

distribution during the storm week and distributions during the normal weeks. In terms of the

daily radii of gyration, we found that this measurement can be best approximated by truncated

power law during the severe winter storm and the truncated power law was found to be the

dominant scaling law of mobility patterns in previous research [5, 9]. Scaling parameters of the

fitted distributions help to detect the impact of the storm on the mobility pattern as well. To

investigate the extent of the change of mobility pattern, we also measured the distance between

center of mass of normal mobility and center of mass of perturbed mobility. The shifting dis-

tances fit a truncated power law distribution.

We further investigated the degree of similarity between recurrent mobility and mobility

under normal and perturbed circumstances separately (Hypothesis 3). Although previous

studies showed that individuals’ trajectories show a high degree of spatial regularity character-

ized by a few highly frequented locations [2, 28, 29, 31], the regularity does not remain during

the severe winter storm. By comparing correlation between individuals’ recurrent mobility

Table 2. Pearson’s correlation analysis between rng and rðkÞg and, between rsg and rðkÞg .

k 2 3 4 5 6 7 8

correlation coefficient (rng , r
ðkÞ
g ) 0.7599454 0.8558787 0.8860109 0.8953719 0.9071972 0.9147848 0.9228992

p—value <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

correlation coefficient (rsg, r
ðkÞ
g ) 0.1604997 0.2023405 0.2562723 0.2973382 0.3395652 0.3723097 0.4060454

p—value < 2.2e-16 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 2.2e-16

df 11619 8025 5598 4004 2956 2237 1695

https://doi.org/10.1371/journal.pone.0188734.t002
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and perturbed mobility with correlation between recurrent mobility and normal mobility, we

found that, contrary to Hypothesis 3, most frequented locations cannot better characterize

individuals’ mobility pattern during the severe winter storm than during the normal circum-

stances. We also noticed that, for individuals with more recurrent locations, there is a higher

correlation between recurrent mobility and perturbed mobility.

There are several limitations in this study deserving further research effort in the future.

First, apart from the geotagged tweets used for this study, the self-reported locations in the text

of tweets during disasters may also be included in future research data collection to achieve a

broader sample. Only 1% of Twitter users geotag their tweets, but we still were able to evaluate

64,080 geotagged tweets per day, which is adequate for this analysis. Additionally, future analy-

sis should examine the specific impact on human mobility of climate elements, such as snow-

fall and wind speed, and by expanding to multiple cases. This study narrowly examined the

aggregated responses to the storm in a single case. Future research should examine how differ-

ent geographical scales may influence the results. Regarding the relationship between recurrent

mobility and normal and perturbed mobility, future research may examine and compare the

specific semantic content of locations under different circumstances.

Conclusion

This work contributes to a growing body of literature aimed at enhancing disaster resilience

and risk management by understanding and predicting human mobility using crowd-

sourced data. The results evaluate overall and nuanced aspects of perturbation on mobility

patterns. The quantitative approaches adopted in this study form a framework to examine

the impact of natural disasters on human mobility patterns using geolocation data from

social media. This framework can be used to assess both spatial and temporal aspects of

urban mobility during disasters, to supplement evaluations of evacuation performance, and

to track urban resilience to natural disasters. The findings of this study form an important

step toward understanding human mobility during disasters. The investigated mobility pat-

terns in this paper could be combined with detailed transportation and weather data and

semantic content from geo-social networking platforms to inform governments and policy-

makers regarding specific disaster responses and relief strategies, for example, through

improved resource allocation, emergency information diffusion, disease prevention, and

evacuation in disasters.
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