
RESEARCH ARTICLE

Design and Implementation of Website
Information Disclosure Assessment System
Ying-Chiang Cho*, Jen-Yi Pan

Department of Electrical Engineering, National Chung Cheng University, 168 University Road, Chia-Yi
62102, Taiwan, R.O.C

* silvergun@mail2000.com.tw

Abstract
Internet application technologies, such as cloud computing and cloud storage, have in-

creasingly changed people’s lives. Websites contain vast amounts of personal privacy infor-

mation. In order to protect this information, network security technologies, such as database

protection and data encryption, attract many researchers. The most serious problems con-

cerning web vulnerability are e-mail address and network database leakages. These leak-

ages have many causes. For example, malicious users can steal database contents, taking

advantage of mistakes made by programmers and administrators. In order to mitigate this

type of abuse, a website information disclosure assessment system is proposed in this

study. This system utilizes a series of technologies, such as web crawler algorithms, SQL

injection attack detection, and web vulnerability mining, to assess a website’s information

disclosure. Thirty websites, randomly sampled from the top 50 world colleges, were used to

collect leakage information. This testing showed the importance of increasing the security

and privacy of website information for academic websites.

Introduction

1. Research motivation
As technology and the Internet grow more pervasive, web vulnerabilities increasingly threaten
website information security [1, 2]. Many malware and malicious technologies, such as spam
and advanced persistent threats (APTs), have been designed during the past 20 years [3, 4]. At-
tackers usually focus on two web vulnerabilities: e-mail address leakage and website database
leakage. The former is typically caused by web programmers’ negligence to filter the most sig-
nificant symbol, @, in e-mail addresses. This symbol is easily detected by disclosure mining sys-
tems. Website database leakage can be generated using the error settings of “robots.txt” files,
which are used by most applications, and can prevent web crawler programs from accessing
web pages [5, 6]. When crawlers attack, they first access a certain page and test whether a “ro-
bots.txt” file exists. Though this file is of great importance for web information security, it is
not always enforced due to various programming and administration mistakes. To avoid being

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 1 / 29

OPEN ACCESS

Citation: Cho Y-C, Pan J-Y (2015) Design and
Implementation of Website Information Disclosure
Assessment System. PLoS ONE 10(3): e0117180.
doi:10.1371/journal.pone.0117180

Academic Editor: Francesco Pappalardo, University
of Catania, ITALY

Received: December 30, 2013

Accepted: December 19, 2014

Published: March 13, 2015

Copyright: © 2015 Cho, Pan. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Funding: The authors thank the National Science
Council, Taiwan, for partially supporting this research
under contract NO. NSC 102-2221-E-194-036 and
NO. NSC 101-2221-E-194-005. The funder had no
role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0117180&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

bypassed by malicious applications, more attention should be paid to password settings and
improving the program writing techniques [7–10].

A website information disclosure assessment system, equipped with a black-box testing
mechanism, is proposed to solve these two chief problems [11–13]. There are three main mod-
ules in this system: the dynamic scanning, static mining, and manual operating modules. These
three modules serve six functions: data syntax analysis, hidden page exploration, multi-domain
searching on one Internet Protocol (IP), specific file searching, search engine assistance, and
website vulnerability updating.

According to statistics from the OpenWeb Application Security Project (OWASP) 2013, in-
jection is the biggest threat to security vulnerabilities. This is based on web applications from
2010 until now and can be seen in Fig. 1 [14].

System security vulnerabilities, also known as system vulnerability, are defined in RFC2828
[15] to be: “A flaw or weakness in a system’s design implementation or operation and manage-
ment that could be exploited to violate the system’s security policy.”

This paper is organized as follows. Section II introduces the core system and techniques.
Section III clarifies the system implementation. Section IV presents experimental results and
analyses. Section V compares different applications. Section VI discusses response strategies,
and Section VII offers a conclusion.

2. Introduction of the core system and techniques
2.1 Dynamic analysis. A dynamic analysis tool directly finds problems in an operating

web page, browses the page by simulating the harmless behaviors of users, cooperates with au-
tomation tools to analyze the web page content, generates requests with different parameters
according to the analysis results, and then analyzes response results in order to discover known
or unknown vulnerabilities [16–19]. These vulnerabilities are real security problems obtained
by simulating the user’s behavior, which is unlike the misreported problems given by the origi-
nal code detection. Based on static and dynamic testing technologies, an increasing number of
special detection methods appeared, such as black-box testing [20], fuzz testing [21], and pene-
tration testing [22]. Black-box testing determines vulnerability by analyzing the testing re-
sponses from an application’s numerical input. On the other hand, white-box testing, which
only analyzes source codes, is relatively ineffective for online applications between the web
server, application server, and database server. Therefore, while testing web applications,
black-box testing is more commonly used to test and observe the response. Fuzzing, based on
injection defects, is an automatic software testing technology, which inputs a large number of
effective data (semi-values) into an application and tests the program for irregularities, thereby
finding the application’s security vulnerabilities. False positives are uncommon with fuzzing
because its dynamic execution has a high degree of automation, unlike a static analysis, which
requires a substantial amount of human involvement during the reverse engineering process
[47]. As a result, fuzzing technology is a fairly effective and low-cost method. This is the reason
many companies and organizations use it to improve the quality of their software, vulnerability
analysts use it to find bugs, and hackers use it to attack. Penetration testing evaluates the securi-
ty of a computer system or network using simulated attacks [48]. This approach analyzes all
possible weaknesses of the system. The testing results are valuable and compelling. However,
this technology not only has its weakness but also can be exploited and used to attack. Honest
testing results create a communication bridge between developers and the information security,
which allows setting of achievable goals and consequently prompts developers to fix problems
[49].

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 2 / 29

2.2 Injection technology. Various injection technologies, such as SQL and Shell injection,
are increasingly attracting attention. SQL injection [23, 24] is a code injection technique used
to attack data-driven applications, in which malicious SQL statements are inserted into an
entry field for execution. For example, the executed statements may dump database contents to
the attacker. In order to be effective, an SQL injection must exploit a security vulnerability in
an application’s software. Using the action of a regular SQL query, SQL injection injects attack
program instructions into the query commands, penetrates the firewall, bypasses the identity
authentication mechanism, and obtains control of the database in order to view and modify
the data. In current web system development environments, such as ASP, PHP and JSP, SQL
injection is popularly used to generate logic errors that destroy different kinds of databases.
Shell injection, also known as command injection, is generally considered one of the most dan-
gerous vulnerabilities because it can be used to gain complete control over a target server. Al-
though server and OS hardening limit the impact and make it more difficult for an attacker to
gain privileges, a significant risk still exists. Oftentimes, web applications need to take advan-
tage of their underlying programs or applications in order to complete some function. This
may be as simple as sending an e-mail using the Unix sendmail program or as complicated as
running custom Perl and C++ programs. From the development point of view, this is an excel-
lent way to reduce the development time of an application. However, if data is passed to these
programs via a user interface, an attacker may be able to inject shell commands into these back-
end programs, potentially leading to compromise.

2.3 Web crawler. A web crawler is an Internet bot that systematically browses the World
Wide Web, typically for web indexing. A web crawler may also be called a web spider [25], an
ant, an automatic indexer [26], or a web scutter. Web search engines and some other sites use
web crawling, or spidering, software to update their own web content or the indices of another
site’s web content. Web crawlers copy all the pages they visit for later processing using a search

Fig 1. Top 10 network security threats.

doi:10.1371/journal.pone.0117180.g001

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 3 / 29

engine that indexes the downloaded pages in order to allow users to search them much more
quickly. Crawlers validate hyperlinks and HTML code. They are also used for web scraping
[27].

A web crawler starts with a list of URLs, called the seeds. As the crawler visits these URLs, it
identifies all the hyperlinks in the page and adds them to the list of URLs to visit, called the
crawl frontier. URLs from the frontier are recursively visited according to a set of policies. If
the crawler is archiving websites, it copies and saves the information as it goes. Such archives
are usually stored so that they can be viewed, read, and navigated as though they were on the
live Web but are actually preserved as “snapshots” [28].

2.4 Targeted threats explained: advanced persistent threats and e-mail address leak-
age. Advanced persistent threats (APTs) [3, 4] are multiple attacks against a specific agency.
The main purpose of these attacks is to penetrate the network of a target agency and steal
confidential information. Attackers use malicious tools in order to establish a remote-control
architecture, similar to botnet, and momentarily steal intelligence. APTs may include intelli-
gence-gathering technology and personnel that can cause an attack to last for a short period.
For example, while stealing trade secrets a few months may be spent gathering security proto-
cols, application weaknesses, and file locations. After the intelligence collection is complete, the
formal attack will not necessarily last long.

Spear phishing may be defined as “a phishing aiming at some individual or group in a spe-
cific agency,” which is similar to fishing with a harpoon [29, 30]. This attack uses information
related to the target to adjust contents, making itself appear more specific, or “personalized”
for the victims. For example, spear phishing e-mails may use the victim’s name, position, or
title, unlike normal phishing, which commonly uses generic names. APT attacks often use
spear phishing techniques because victims in higher positions are more tempted to open these
e-mails [31, 32]. These targets likely have some knowledge about the company’s information
security principles, so they are less likely to open general phishing e-mails or have no time to
read messages that appear to be spam. Spear phishing significantly increases the odds of an e-
mail being read by the target, which increases the likelihood of penetrating target networks. In
many cases, spear phishing e-mails use normal-seeming attachment files because sharing files
via e-mail is common in many large enterprises and government agencies. Therefore, these in-
stitutions are often the target of APTs.

The reconnaissance gathered before the penetration occurs mainly focuses on the target
agency’s people. In this stage, the hacker acquires personnel information, such as names, titles,
and e-mail addresses, from underground markets or attack funders. This information is also
conveniently found on the Internet. Attackers collect relevant information needed for their so-
cial engineering technique from social networking sites, enterprises, institutions, and academic
publication websites [34]. This reconnaissance allows an attacker to find the key personnel of
target institutions. These people usually are powerful, have important files, or have permission
to access the desired data. Once the key personnel are found, criminals determine their e-mail
addresses, which will be used in the spear phishing attacks [33]. Therefore, the ability to obtain
a target’s e-mail address using multiple methods and distinguishing the e-mail owner’s proper-
ty from different areas, like the website, becomes very important. This is shown in Fig. 2.

Methods

3. System implementation
Most modern site security detecting tools only prompt that there are risks in certain parts of a
website, but they do not actually attack the target website. Therefore, we hope to understand
SQL injection attacks and determine the possible damage by implementing a set of tools and

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 4 / 29

attacking target websites. To achieve these goals, we designed an SQL injection penetration sys-
tem to test the personal privacy information revealed by target websites. This system utilizes
black-box testing, penetration testing, and other technologies. It combines the spirit of web
crawlers and the concept of application search engines with vulnerability detection. This sys-
tem detects whether websites have SQL injection, vulnerability, or an e-mail address leakage
[45, 46].

This study used the website information disclosure assessment system (WIDAS), shown in
Fig. 3. It was developed according to the previously mentioned algorithms, using JAVA SE7
with more than 11,000 rows of coding. It can be installed normally in the Java Runtime Envi-
ronment (JRE) on WinXP, Vista, Win7, or Win8. WIDAS can perform injections that pene-
trate databases, such as MS-SQL, MySQL, Oracle, PostgreSQL, SQLite, and Access, as well as
web languages, such as ASP, ASPX, PHP, JSP, and CGI.

WIDAS contains three modules and six functions [45, 46], as is shown in Fig. 4. The mod-
ules are dynamic scanning, static mining, and manual operating modules. The dynamic

Fig 2. Website search plays an important role in e-mail address selection [33].

doi:10.1371/journal.pone.0117180.g002

Fig 3. WIDAS interface.

doi:10.1371/journal.pone.0117180.g003

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 5 / 29

scanning module detects multiple websites using a keyword query on different search engines
in the market and the leakage detection function of the proposed system. The static mining
module makes a deep detection on a single site, such as e-mail leakage, the presence of robots.
txt files, an SQL injection, file downloading URLs, or broken links. The crawler, injection, and
scheduler are the core concerns of this study.

3.1 Crawler. The crawler module mainly analyzes web page content and filters out useful
information [34–37]. This module is divided into three components: crawler, crawler queue,
and visited table. The crawler crawls web pages and filters necessary information, which con-
tains links and e-mail addresses. It is designed as a multithreaded processing program, so it can
quickly crawl entire sites. The crawler queue stores the links filtered from the crawler, and the
visited table records the links that have been crawling.

At present, many social attacks and APT attacks are based on e-mail information. There-
fore, fixed detection focuses on e-mail filtering, and the following example also focuses on links
and e-mails when filtering for details.

(1) Link selection:
After downloading a web page, the crawler filters web content information using regular ex-

pressions, i.e., “href = \"(http://){1}([^(\")]*)\"”. If this is in the fixed scanning function, then it
compares the filtered-out links with the initial link in order to verify that they belong to the
same web domain.

def GetAllUrl(url, html):
urllist = []
reg = re.compile(‘href = \“(http://){1}([^(\“)]*)\”’)
urlarray = reg.findall(html)
for one in urlarray:
. . .

domain = GetDomain(newurl)

Fig 4. WIDAS framework.

doi:10.1371/journal.pone.0117180.g004

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 6 / 29

. . .

return urllist

When the crawler stores links collected in the crawler queue, the scheduler filters them
during their first time through, comparing them with the dictionary library and giving
high weight to links having substantial relevance. The dictionary library information was
gathered from the SQL injection cases recorded by the Exploit Database [51] and
WooYun [52].

asp?id =
cat.asp?cat =
productlist.asp?catalogid =
. . ..
index.cfm?pageid =
Category.cfm?c =
productlist.cfm?catalogid =

In addition to the comparison made with the dictionary library, the scheduler checks the
link structure because SQL injection commonly exists in dynamic links. The filter for the
scheduler is “?”.

and 8 = 9 and 8 = 8
and user = 0 and 080 = 080

and 8 = 9 and 080 = 08
%’ and ‘%‘ = ‘

and 1 = 1
def GetMaybeInjectUrl(url, html):

urllist = []
reg = re.compile(‘href = \“(http://){1}([^(\“)]*)\”’)
urlarray = reg.findall(html)
for one in urlarray:
. . .

if url2.find(‘ = ’) = = -1 or url2.find(‘?’) = = -1:
. . .

return urllist

Common websites are excluded and skipped by the crawler, which can be seen below.

commonURL = [‘baidu.com’, ‘google.’, ‘yahoo.com’, ‘msn.com’,
‘live.com’, ‘bing.’, ‘microsoft.com’, ‘joinsmsn.com’, ‘micro-
softtranslator.com’, ‘googleusercontent.com’, ‘youtube.com’,
‘blogger.com’]

(2) E-mail filtering:
The crawler filters out e-mails during the web content analysis using the regular expression:

“([\w-]+(?:\.[\w-]+)�@[\w-]+(?:\.[a-zA-Z-]+)+)”. Formal expressions of e-mail filtering are not
limited to the “@” condition but also need to take other factors into account.

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 7 / 29

def Gete-mail(content):
mails = []
re_mail = re.compile(r"([\w-]+(?:\.[\w-]+)�@[\w-]+(?:

\.[a-zA-Z-]+)+)")
for m in ms:

mails.append(m)
return mails

3.2 Injection. The injection module detects an SQL injection. If the website programming
system neglects to check the SQL commands in the entered values, harmful instructions may
be mistakenly assumed to be the normal SQL commands that will cause unexpected feedback
data from database. This abnormal feedback information can be obtained by illegal users and
may lead to serious information security issues, such as data leaks, site structure detection, sys-
tem administrator account changes, malicious web page links, and malicious cross-site script
insertion [38, 39].

The injection module has three components: injection, injection queue, and injected table.
Injection mainly executes the threat detection and penetration testing of the SQL injection.
The injection queue stores the links to be detected, and the injected table records the
tested links.

This module first determines the site’s design quality by searching for injectable links. It
then joins the grammar dictionary library information in the URL and uses the feedback infor-
mation to automatically determine whether continued digging would be valuable. When it is
valuable to keep digging, the next step is to detect the website’s database type using the check-
ing functions defined by different databases. MS SQL and MySQL, for example, use “len ()” to
calculate length, while Oracle uses “length ()”. In other words, when “len (‘s’) = 1” is used to
test if a website message can be properly given, the target site’s database may be MS SQL or
MySQL. Otherwise, Oracle or another database type must be used. In addition, other internal
functions can also distinguish database types. This study checks for MS SQL, MySQL, Access,
Oracle, SQLite, and PostgreSQL database types.

After obtaining the database type, the table speculation and field detection must be created
in different ways. Specific dictionaries are needed in Access, while specific SQL instructions
can be used for query tables and fields in MS SQL and some in MySQL.

Fig. 5 shows the system operation process after the injection point was determined. In order
to decipher whether links are injectable, three detection types can be used: integer, string, and
searching type injections. Thus, the practical injection detection needs to perform the following
check:

def CheckIsInject(self):
check whether it is an injection point.
nRet = CheckKey(self.conf,“”,‘int’)
if nRet = = False:

nRet = CheckKey(self.conf,“”,’str’)
if nRet = = True:

nRet = CheckKey(self.conf,“and 8 =
9”,’str’)

if not nRet:
self.conf.InjectType =

u’str’

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 8 / 29

else:
nRet = CheckKey(self.con-

f,“”,’search’)
if nRet = = True:

nRet = CheckKey(self.con-
f,“and 8 = 9”,’search’)

if not nRet:
self.conf.Inject-

Type = u’search’
else:

. . .

else:
nRet = CheckKey(self.conf,“and 8 =

9”,‘int’)
. . .

self.conf.InjectType = u‘int’

If the link is injectable, the previously mentioned methods can be applied, and the error val-
ues returned by the website can also distinguish the injection type. This is seen below.

def CheckError(html):
DbType = ‘’

if html.find(‘Microsoft OLE DB Provider for SQL Server’)!
= -1:

DbType = u‘mssql’

Fig 5. Injection check flow.

doi:10.1371/journal.pone.0117180.g005

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 9 / 29

. . ..
elif html.find(‘Microsoft JET Database Engine’)! = -1 or

html.find(‘[ODBC Microsoft Access Driver]’)! = -1 or html.find
(‘[Controlador ODBC Microsoft Access]’)! = -1:

DbType = u‘access’
elif html.find(‘Microsoft OLE DB Provider for ODBC Driv-

ers’)! = -1 and html.find(‘[MySQL]’)! = -1:
DbType = u‘mysql’

. . ..
elif html.find(‘Microsoft’)! = -1 and html.find

(‘line’)! = -1:
DbType = u ‘unknown’

. . ..
return IsShowError, DbType

Different detection functions are named according to the different database types. Access,
for example, must have a hidden data table, “msysaccessobjects”, in the database. Therefore,
testing special data tables helps determine whether the site host uses an Access database.

def CheckAccess(self):
nRet = CheckKey(self.conf,"and 0<(select count(1) from msysac-

cessobjects)")
if nRet = = True:

self.conf.DbType = ‘access’
return True

else:
return False

After detection of the Access database, this system first uses “Union” to determine which
bytes encompass the database’s content. If this instruction is supported, the database content
can be displayed using blasting technology.

3.3 Scheduler. The scheduler in this system serves two functions: the crawler’s crawling
priority scheduling and the injection’s testing priority scheduling. The main purpose of priority
scheduling is to detect more SQL injection threat links in less time, which improves the system
detecting efficiency.

In order to generate an injection library, this study analyzed the link structure of the SQL
threat cases that were collected from the Exploit Database [50] and WooYun [51]. Using the
data collected by these two vast databases, SQL injection threat links are determined faster.

Every newly collected link is saved in the crawler queue and injection queue. The scheduler
gives the new link different priorities, according to the relevance judgment between the new
link structure and the library information. Injection testing results are returned to the crawler
module, and the crawler queue adjusts the data priorities, which guides the crawler to select a
prior website to crawl. The link with the threat of an SQL injection can quickly be detected
using these priority adjustments.

The link structure is divided into three parts: domain, directory name, and parameters. The
relevance among them has three levels. Links with the same directory names have the highest
level of relevance. Links with different directory names but the same parameters have a medi-
um level of relevance. Links with different directory names and different parameters have the
lowest level of relevance, meaning the relevance degree between them is zero.

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 10 / 29

Experiments

4. Real experimental analysis
In order to verify the system’s validity, we conducted two experiments.

4.1 Experiment 1. This experiment tested 30 university websites, which were randomly
sampled from the top 50 of the Quacquarelli Symonds 2013 university ranking list [40]. E-mail
addresses were gathered first, and then the injectable URLs were determined. This analysis was
done on a single computer running Windows 8, with an Intel Core I7 3.9 GHz (six-core proces-
sor) and 16 GB RAM. Each university website was allotted a maximum of 48 hours for analysis,
although some analyses terminated before that time limit.

Table 1 shows the number of e-mail addresses and injectable URLs found after 48 hours
spent mining the 30 university websites. Six universities exposed over 10,000 e-mail addresses,
and nine universities had URLs that could be injected. In total, 63,522 e-mail addresses and 82

Table 1. University e-mail number and injectable URL statistics.

School Website E-mail Number Injectable URL Number

Massachusetts Institute of Technology web.mit.edu 5241 0

Harvard University www.harvard.edu 38 0

University of Cambridge www.cam.ac.uk 759 1

University College London www.ucl.ac.uk 2389 6

Imperial College London www.imperial.ac.uk 1 0

University of Oxford www.ox.ac.uk 3524 2

Stanford University www.stanford.edu 9611 8

Yale University www.yale.edu 9621 2

University of Pennsylvania www.upenn.edu 6785 1

Cornell University www.cornell.edu 2212 3

University of Edinburgh www.ed.ac.uk 6254 0

University of Toronto www.utoronto.ca 1437 14

Ecole Polytechnique Fédérale de Lausanne www.epfl.ch 1 0

McGill University www.mcgill.ca 1236 9

University of Michigan www.umich.edu 310 1

University of Hong Kong www.hku.hk 712 12

Australian National University www.anu.edu.au 394 0

Ecole normale supérieure, Paris www.ens.fr/?lang = fr 353 0

Northwestern University www.northwestern.edu 2765 0

University of Bristol www.bristol.ac.uk 4718 11

The University of Melbourne www.unimelb.edu.au 514 6

The University of Tokyo www.u-tokyo.ac.jp/en/ 8 0

The University of Manchester www.manchester.ac.uk 646 1

The Hong Kong University of Science and Technology www.hku.hk 612 1

Kyoto University www.kyoto-u.ac.jp/en 31 0

Seoul National University www.snu.ac.kr 4 0

University of Wisconsin-Madison www.wisc.edu 43 0

The University of Sydney www.sydney.edu.au 0 0

The Chinese University of Hong Kong www.cuhk.edu.hk 3296 4

University of California, Los Angeles www.ucla.edu 7 0

doi:10.1371/journal.pone.0117180.t001

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 11 / 29

https://www.harvard.edu
https://www.cam.ac.uk
https://www.ucl.ac.uk
https://www.imperial.ac.uk
https://www.ox.ac.uk
https://www.stanford.edu
https://www.yale.edu
https://www.upenn.edu
https://www.cornell.edu
https://www.ed.ac.uk
https://www.utoronto.ca
https://www.epfl.ch
https://www.mcgill.ca
https://www.umich.edu
https://www.hku.hk
https://www.anu.edu.au
https://www.ens.fr/?lang�=�fr
https://www.northwestern.edu
https://www.bristol.ac.uk
https://www.unimelb.edu.au
https://www.u-tokyo.ac.jp/en/
https://www.manchester.ac.uk
https://www.hku.hk
https://www.kyoto-u.ac.jp/en
https://www.snu.ac.kr
https://www.wisc.edu
https://www.sydney.edu.au
https://www.cuhk.edu.hk
https://www.ucla.edu

injectable URLs were detected in this experiment. Fig. 6 shows an example of the system’s di-
rect output in terms of e-mail addresses, injectable URLs, and broken links.

The data from Table 1 is further summarized in Fig. 7 and Fig. 8, which display the distribu-
tions of e-mail and injectable URL counts by university. According to these two figures, univer-
sities having over 1,000 leaked e-mail addresses account for 80% of the total number of
universities. This experiment shows that most universities do not take extra steps in order to
process the “@” symbol, such as changing “@” to “at” or replacing it with an “@” picture. The
injectable URL inspection resulted in nine universities having injection vulnerabilities, which
could let hackers gain access to the underlying databases and exploit the information for a vari-
ety of malicious purposes.

Fig. 7 shows details of the 30 university websites, including database types, database names,
and the specific formats used for injection attacks. Upon further exploration of the databases,
we were able to identify database content, as is shown in Fig. 8. Additionally, we found some
databases that stored user account passwords in clear text rather than hashing them. This can
be seen in Fig. 9.

4.2 Experiment 2. This experiment was done on a single computer running on Windows
7, with an Intel Core I7 3.4 GHz (four-core processor) and 8 GB RAM. Three department web-
sites of the National Chung Cheng University (CCU) were targeted: the Department of Com-
munications Engineering (COMM.CCU), the Department of Electrical Engineering (EE.CCU),
and the Department of Computer Science and Information Engineering (CSIE.CCU).

Typically, the remote managers’ pages are hidden in locations without explicit link URLs,
which makes it difficult for outsiders to decipher. These pages often return useful information
for detection, and sometimes they reveal key parameters of the website database. The WIDAS
hidden page exploring function is shown in Fig. 10. Area A is added to the interface in order to
enter a web language because there is an ever-increasing amount of web languages, such as
HTML, ASP, PHP, CGI, and JSP, being used. In area B, when searching for hidden pages, the
page name defined by the syntax dictionary is selected for scanning or exhaustive searching.

Fig 6. Program output, showing e-mail addresses, injectable URLs, and broken links.

doi:10.1371/journal.pone.0117180.g006

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 12 / 29

Exhaustive searching examines the given characters and length one at a time. This means it
takes longer, but it also has wider coverage. Page names defined in the syntax dictionary can be
added or deleted according to the currently predominant naming rules.

This experiment ran the WIDAS hidden page exploring function in three department web
pages and discovered the five recessive results listed in Table 2.

In the three department websites, WIDAS obtained two types of e-mail addresses: dominant
and recessive. Dominant e-mail addresses are usually open to the public, belong to teachers or
administrators, and are located in the upper part of the web page. Recessive e-mail addresses
are usually in deep web domains, such as old discussion boards, old workshops, or various sub-
ject pages. The experimental results are shown in Table 3.

Recessive email amounts for each department website listed in Table 3 are shown in Figs.
11–16.

Results

5. Comparison with different applications
There are various applications used for testing security vulnerabilities, such as the Acunetix
Web Vulnerability Scanner, aidSQL, Gamja, and Grabber. They are based on PHP, ASP, ASP.

Fig 7. Detailed analysis of injected URLs.

doi:10.1371/journal.pone.0117180.g007

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 13 / 29

NET, VB.NET, C#, Java, or some other programming language. The main performance com-
parisons with well-known applications are listed in Table 4. The numeric representations are
as follows: “1” builds crawlers and explores the entire site’s architecture; “2” searches and stores
the entire web page’s links; “3”mirrors the entire website; “4” outputs a statistical analysis re-
port; “5” searches for the web address according to keywords; “6” crawls all e-mail accounts on
the website; “7” scans web weakness using keywords and help from search engines; “8” deeply
mines weaknesses in a single site; “9” has a mobile version; “10” analyzes web syntax; “11” de-
tects and analyzes hidden web pages; “12” downloads different types of files on the website;
“13” tests weak passwords; “14” scans live IPs within a specified network domain and analyzes
its properties; “15” updates website vulnerabilities; and “16” runs complex pages such as Ajax.

As seen in Table 4, the proposed system has obvious advantages and comprehensive func-
tions, especially as it takes into account the entire website mirror, the web address search using
keywords, the situation in which all e-mail accounts crawl in the website, the hidden web page

Fig 8. Database content revealed by an injection attack.

doi:10.1371/journal.pone.0117180.g008

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 14 / 29

detection and analysis, different types of files on the website download, and website
vulnerability updates.

6. Response strategies
E-mail address leakage and web database leakage are currently the two most serious informa-
tion vulnerabilities. In contrast to traditional phishing attacks, bouncer list phishing [41–43], a
new phishing attack, can lock on specific targets, and only these targets can visit the phishing
website. Therefore, this attack pattern avoids detection or, at least, delays the detection time.
Here, the attacker sends e-mails and attaches malicious links. When the user clicks on the link,
the attacker will first verify his or her identity and then load the phishing web page if the user is
on the target list or send a message, such as “can’t find the page”, if not. This is similar to a VIP
party, in which only the guests on the invitation list can attend. This new phishing is also a type
of APT attack. It is strategic, it is not a single event, and it usually lasts for a long time.

Fig 9. Accounts and passwords stored in the database.

doi:10.1371/journal.pone.0117180.g009

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 15 / 29

Therefore, protection methods must be strong, and users should form good information
operation habits.

6.1 Characteristics of APT attacks.

1. Locked particular targets: A planned, organized, information-stealing attack against specific
governments or companies may take a few days, weeks, months, or years.

2. Fake letters: By sending malicious social engineering e-mails to locked targets, the attacker
first obtains an opportunity to install malicious applications on the target computer.

3. Low and slow operation: In order to continually steal an administrator’s account and pass-
word without being detected, the malware must always be self-hidden.

4. Customized malicious components: Aside from ready-made malware, attackers also use ma-
licious customized components.

Fig 10. Interface for hidden page exploring function.

doi:10.1371/journal.pone.0117180.g010

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 16 / 29

5. Remote control tools: A remote-control architecture similar to botnets can be created to reg-
ularly copy files with potential value, send them to the attack command, and control
the server.

6. Information Delivery: Filtered sensitive confidential data may be encrypted and sent outside
by malwares.

6.2 E-mail protection methods. Given these features, we find that hackers quickly deter-
mine attributes of e-mail owners from public websites. Therefore, e-mails on public websites
need to be protected from web crawlers while the access of legitimate viewers is not affected.
This paper proposes the following methods:

(1) Replace “@” and “.” in e-mail addresses by other symbols, such as “abcdefg(at)hotmail
(dot)com” or “admin[at]mail[dot]com.”

(2) Change the code direction using CSS “unicode-bidi” or “direction”.

<style>
span.codedirection {unicode-bidi:bidi-override; direction:

rtl;}
</style>

Table 2. Statistical results of WIDAS hidden page exploring function.

List of HTTP Status
Codes

Contents

200 OK Standard response for successful HTTP requests. The actual response will
depend on the request method used. In a GET request, the response will contain
an entity corresponding to the requested resource. In a POST request the
response will contain an entity describing or containing the result of the action.

301 Moved
Permanently

This and all future requests should be directed to the given URI.

302 Found This is an example of industry practice contradicting the standard. The HTTP/1.0
specification required the client to perform a temporary redirect (the original
describing phrase was “Moved Temporarily”), but popular browsers implemented
302 with the functionality of a 303 “See Other.” Therefore, HTTP/1.1 added
status codes 303 and 307 to distinguish between the two behaviors. However,
some web applications and frameworks use the 302 status code as if it were the
303.

403 Forbidden The request was a valid request, but the server is refusing to respond to it.
Unlike a 401 Unauthorized response, authenticating it will make no difference.

500 Internal Server
Error

A generic error message, given when an unexpected condition was encountered
and no more specific message is suitable.

doi:10.1371/journal.pone.0117180.t002

Table 3. E-mail addresses in three department websites.

COMM.CCU EE.CCU CSIE.CCU

Dominant e-mail
amount

82 51 114

Dominant URL http://www.comm.ccu.edu.
tw

http://www.ee.ccu.edu.
tw

http://www.cs.ccu.edu.
tw

Recessive e-mail
amount

31 (as shown in Fig. 11) 10 (as shown in Fig. 12) 53 (as shown in
Fig. 13)

Recessive URL amount 16 (as shown in Fig. 14) 2 (as shown in Fig. 15) 8 (as shown in Fig. 16)

doi:10.1371/journal.pone.0117180.t003

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 17 / 29

http://www.comm.ccu.edu.tw
http://www.comm.ccu.edu.tw
http://www.ee.ccu.edu.tw
http://www.ee.ccu.edu.tw
http://www.cs.ccu.edu.tw
http://www.cs.ccu.edu.tw

<p> moc.liam@nimda
</p>

(3) Utilize the CSS “display:none”.

<style>
p span.displaynone {display:none;}
</style>
<p>admin@ null mail.com

</p>

(4) Encrypt using ROT13.

Fig 11. Recessive e-mail amount from COMM.CCUwebsite.

doi:10.1371/journal.pone.0117180.g011

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 18 / 29

<script>
document.write(“<nuers = “znvygb:fvyinasbbone10@ gvyyyngr.

pbz” ery = “absbyybj”>”.replace(/[a-zA-Z]/g, function (c) {re-
turn String.fromCharCode((c< = “Z”?90:122)> = (cc = c.charCodeAt
(0)+13)? c:c-26);}));

</script>admin’s Mail

(5) Replace JavaScript code (I).

Fig 12. Recessive e-mail amount from EE.CCU website.

doi:10.1371/journal.pone.0117180.g012

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 19 / 29

<script>
function TagReplace(str)
{

str = str.replace(“Cople’s”,“admin”);
str = str.replace(“Mail”,“/mail.com”);
str = str.replace(“/”,“@”);
return(str)

}
document.write(TagReplace(“admin’s Mail”))
</script>

(6) Replace JavaScript code (II).

<script>
var name = “your admin@mail.com account name”;

Fig 13. Recessive e-mail amount from CSIE.CCU website.

doi:10.1371/journal.pone.0117180.g013

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 20 / 29

var domain = “your admin@mail.com sever”;
document.write("");
document.write(name+"@"+domain+"");
</script>

(7) Encrypt using JavaScript code. This method ensures that robots are unable to get the
real address.

<script>
function hivelogic_enkoder(){var kode =
”kode = “oked” = rnhg%@nrgh%_n@gr_h_%n_g@_rh___
%__u{_k@zj}ioskt(4gxnzk.&B__"+"Cx(lgbrsuoizv@
kuirF4wtiws4(uzbz&kobrbCD(5(DB /g____(A%___>{@
��>iru+l@3>l?nr"+"gh1ohqjwk>l.,~f@
nrgh1fkduFrghDw+l,06>li+f?3,f.@45;>{.@
Vwulqj1iurpFkduFrgh"+"+f000r,hn{g_@>__@�%i{u�l>

3rl++ @r>h?onqgw10h,jlk@4,>{.@5r~h.fndgD1+k.u,"+
"wnlg41.kruhwfldD00+0,rnhg{@+.?lrnhgo1qhwjBkrnhgf1dkDu+
wrnhgo1qhwj0k,4�"+" =, �>_>@%�{i�u>lr3+l@+
>r?hnogq1wh0j,kl4@>,.{5@~r.hnfgd1Dk+u.w,ln4g.1rkhufwd"+

Fig 14. Recessive URL amount from COMM.CCUwebsite.

doi:10.1371/journal.pone.0117180.g014

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 21 / 29

"lD+00,0nrgh@{.+l?nrgh1ohqjwkBnrgh1fkduDw+
nrgh1ohqjwk04, = ��,%>{>�@>�ri+"+"u@l>3?ln+
gr1hhojqkw40>,.l5@~,.{n@gr1hkfudwDl+4.,rnhgf1dkDu+
w,l000rnhg"+"{@+.?lrnhgo1qhwjBkrnhgf1dkDu+
wrnhgo1qhwj0k,4� =, �">x;’ =; ’of(r = i;0<iokedl"+
".netg;h+i)+c{k = do.ehcraoCedtAi(-);3fic(0<c) = +21;8+xS
= rtni.grfmohCraoCedc(}"+")okedx = “;x = ’’;
for(i = 0;i<(kode.length-1);i+ = 2){x+ = kode.charAt(i+1)+
kode.ch"+"arAt(i)}kode = x+(i<kode.length?kode.charAt
(kode.length-1):’’);";var i,c,x;while(eval(kode));}
hivelogic_enkoder();
</script>

(8) Hide e-mails. The following codes can hide e-mails for a few seconds. Although difficult
for robots to collect, it is easy for normal users to directly read.

Fig 15. Recessive URL amount from EE.CCUwebsite.

doi:10.1371/journal.pone.0117180.g015

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 22 / 29

<script>
var BtxVIdHlXs = “qPaqzK”;var LURRQZ =
"@WlA.com";var qEFIxznKla =
"LbDmvBaAm";var pGJqYOsAsB =
"@kfgTpD.com";var nlEeReX = “cople.cn”;var HASfTupp =
"@qq.com";var PDPtUCBXl = “FIHQDolF”;var YjmaNjK =
"@WUT.com";var VxmEjRWCF = 2005;
setTimeout("dOSQjupmqhAVBEJ()",VxmEjRWCF);
function dOSQjupmqhAVBEJ()
{document.getElementById("YVeorjwmX").innerHTML =
nlEeReX + HASfTupp;}
</script>
admin@mail.com Loading. . .

(9) Utilize CSS pseudo-classes. Insert “::before” and “::after” into e-mail usernames and do-
main names to the right of the “@” symbol. Web spiders usually cannot see CSS, but they
can see the “@” symbol. The following example hides “john@gmail.com”.

Fig 16. Recessive URL amount from CSIE.CCUwebsite.

doi:10.1371/journal.pone.0117180.g016

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 23 / 29

<style>
my-admin@mail.com::after {

content: attr(data-domain);
}
my-admin@mail.com::before {

content: attr(data-user);
}

</style>
<!—set user name and realm name of admin@mail.com through data-

user and data-domain—>
<my-admin@mail.com data-user = “john” data-domain = “gmail.

com”>@</my-admin@mail.com>

(10) Use JavaScript’s “onclick” event. E-mail addresses can be outputted as mailto links by re-
placing the characters “.” and “@” with text. Adding the “onclick” event converts
these replacements.

<a href = “mailto:adminATmailDOTcom”
onclick = “this.href = this.href

.replace(/AT/,‘@’)

Table 4. Performance comparison of vulnerability mining software.

Software / Function 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Teleport Pro
p p p p p

Black Widow
p p

Win Web Crawler
p p p

Visual Web Spider
p p p

JOC Web Spider
p p p

Gyxi’s Image Spider
p p

DRK Spider
p

HDSI2005
p p p

Wget
p p

HTTrack Web Copier
p p

Acunetix WVS
p p p p p p p

NTOSpider
p p p p p p

Netsparker
p p p p p p p

IBM AppScan
p p p p p p p p p

HP WebInspect
p p p p p p p p

Syhunt Dynamic
p p p p p p

Burp Suite
p p p p p p p p

N-Stalker Enterprise
p p p p p p p

WebCruiser
p p p p p p p

Zed Attack Proxy
p p p p p p p

IronWASP
p p p p p p

N-Stalker
p p p p p p

WebSecurify
p p p p p p

WIDAS
p p p p p p p p p p p p p

doi:10.1371/journal.pone.0117180.t004

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 24 / 29

.replace(/DOT/,‘.’)”
>connect me

(11) Disorder arrays. Divide an e-mail address array into several parts, output the correct
order using JavaScript, and add it to the web page utilizing the “.innerHTML” attribute.

<script>

var parts = [“john”, “abc”, “com”, “.”, “@”];
var admin@mail.com = parts[0] + parts[4] + parts[1] +

parts[3] + parts[2];
document.getElementById("admin@mail.com").innerHTML =

admin@mail.com;
</script>

(12) Utilize the Google reCAPTCHAMailhide tool. This tool helps protect the receiver box by
requesting users to view the e-mail address only after correctly verifying the
reCAPTCHA questions. This mechanism prevents e-mail addresses from being automat-
ically found by spammers.

(13) Implement “antispambot” in WordPress. This function transforms e-mail addresses into
ones that cannot be identified by robots but can be displayed by browsers. The following
codes are added in functions.php theme files.

add_shortcode (‘admin@mail.com’, ‘wpjam_admin@mail.com_short-
code_handler’);

function wpjam_admin@mail.com_shortcode_handler ($atts, $con-
tent = ’’) {

extract (shortcode_atts (array(
‘mailto’ => 00’

), $atts));
return antispambot ($content, $mailto);
}

(14) Employ the AntiSpamBot Shortcode plugin tool. This tool is easy to master. After upload-
ing and activating, enter the e-mail address, you-e-mail-address@e-mail.com. The source
code of the e-mail address is given by:

you-email-addres
s@ email.com

6.3 Database protection methods. During the penetration-testing phase, we found many
website databases with flawless, solid code management. We then summarized these practical
approaches that prevent SQL injection.

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 25 / 29

1. Clearly define users’ rights when accessing a database. If a normal user embeds a DROP
TABLE statement in the SQL query syntax, the programmust decide whether or not to exe-
cute it. The Drop grammar is relative to the basic database object, so legitimate users must
have the corresponding permissions. Unless necessary, terminal users, i.e. the application sys-
tem operators, do not need the right to establish or delete database objects. Even if the SQL
statement has been implanted with malicious operation grammar or program code, the action
will not be executed because the rigorous access control is restricted to the user operation.
Therefore, it is better to distinguish system administrator users from ordinary users in the ac-
cess architectural design. This greatly reduces the harm caused by SQL injection attacks.

2. Use parameterized query syntax. When writing SQL query syntax, if a user’s input variables
do not have a direct, dynamic connection to the SQL query syntax and are passed as param-
eters, data hidden codes SQL injection attacks can be effectively avoided. In other words, the
user’s inputs cannot directly be incorporated into the SQL query syntax. To avoid attack
cases, the user’s inputs must be filtered, or parameterized queries must be employed to de-
liver the user’s input variables. Adopting these measures ends most data hidden codes SQL
injection attacks. Unfortunately, few database systems support parameterized statements,
and developers should use this method when designing a system.

3. Check and verify user input data. Many corresponding ready-to-use tools exist that check
and verify user input data. In the SQL server database, there are several user input validation
tools that can be used by administrators to deal with SQL injection. For example, if only the
required value is accepted and content containing binary data and comment characters is
not filtered and validated, then improper attack grammar will not be implanted and some
buffer overflow attacks, as well as other related attack techniques, can be prevented. Testing
the data type, length, format, and range in order to validate user input data is one of the
most common and effective precautions against data hidden codes SQL injection attacks.

4. Use the built-in security parameters of the SQL server database. In order to reduce the nega-
tive influence of data hidden codes SQL injection attacks, Microsoft specially designed some
relatively safe SQL parameters for managers in the SQL server database. In the database de-
sign process, developers should use these parameters to prevent malicious SQL injection.

5. Effectively prevent data hidden codes SQL injection attacks in the N-Tier architecture. Many
kinds of Internet applications currently adopt a 3-Tier or N-Tier application system archi-
tecture. In multiple application architectures, the user should be allowed to enter the data
area only after verification, and attention must be paid to each tier. Both the client and data-
base interfaces should adopt corresponding measures in order to prevent data hidden codes
SQL injection.

6. Use professional code vulnerability scanning tools to find the implied leakage for application
systems. Under the assistance of professional vulnerability scanning program code analysis
tools, such as white box, application system developers can quickly and effectively find all
possible attack code areas. Database administrators and application system developers
should take active measures to prevent SQL data hidden codes attack in order to ensure at-
tackers do not know how to start attacks.

Conclusions
In our study, code review aided the static analysis [44], and penetration testing assisted the dy-
namic analysis [52]. The testing results of our static and dynamic analyses have limits. In order

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 26 / 29

to improve network application security, penetration testing is indispensable, and security
maintenance work is more successful when penetration testing is regularly undertaken.

Various automated programs that are used to collect data exist in the Internet environment
at any given moment. During the experiments, we discovered that many academic websites do
not specially treat or cloak the characteristics of “@” in e-mail addresses or of robots.txt files.
The proposed system easily collected multiple e-mail addresses. Malicious users can automati-
cally send dangerous Trojan virus e-mails to these addresses and cause security problems.

Traditional technologies, such as firewall access control, intrusion prevention systems
(IPSs), and e-mail security gateways (ESGs), cannot meet the demands of current and future
information defense. An APT is an advanced, continuous, and target-type attack. As opposed
to traditional spammers, APTs adopt a long-term targeted penetration. In order to prevent at-
tacks from spam and APTs, protecting public e-mail accounts on websites becomes of
great importance.

In addition, this research also found that many databases stored passwords in clear text
style, which may be easily utilized by hackers to impersonate permissions when they obtain the
database contents. Software applications are a good starting point, but they will not fend off at-
tacks from those who want to break software protections and steal useful information. There-
fore, our results remind us that the encryption of data storage is as important as website design
and database management.

Author Contributions
Conceived and designed the experiments: Y-CC J-YP. Performed the experiments: Y-CC J-YP.
Analyzed the data: Y-CC J-YP. Contributed reagents/materials/analysis tools: Y-CC J-YP.
Wrote the paper: Y-CC J-YP.

References
1. Jovanovic N, Kruegel C, Kirda E (2006) Pixy: A static analysis tool for detecting web application vulner-

abilities. In Security and Privacy, 2006 IEEE Symposium on (pp. 6-pp). IEEE.

2. Wassermann G, Su Z (2007) Sound and precise analysis of web applications for injection vulnerabili-
ties. In ACM Sigplan Notices (Vol. 42, No. 6, pp. 32–41). ACM.

3. Daly MK (2009) Advanced persistent threat. Usenix, Nov, 4.

4. Shuai Z (2011) The Detection and Defense about APT Attack. Information Security and Technology, 9,
028.

5. Sun Y, Zhuang Z, Giles CL (2007) A large-scale study of robots. txt. In Proceedings of the 16th interna-
tional conference onWorld WideWeb(pp. 1123–1124). ACM.

6. Pant G, Srinivasan P, Menczer F (2004) Crawling the web. In Web Dynamics (pp. 153–177). Springer
Berlin Heidelberg.

7. Von Ahn L, Maurer B, McMillen C, Abraham D, BlumM (2008) recaptcha: Human-based character rec-
ognition via web security measures. Science, 321(5895), 1465–1468 doi: 10.1126/science.1160379
PMID: 18703711

8. Friedman B, Hurley D, Howe DC, Felten E, Nissenbaum H (2002) Users’ conceptions of web security:
A comparative study. In CHI002 extended abstracts on Human factors in computing systems (pp. 746–
747). ACM.

9. Andrews M (2006) Guest Editor’s Introduction: The State of Web Security. IEEE Security & Privacy, 4
(4), 0014–15.

10. Garfinkel S, Spafford G (2002) Web security, privacy & commerce. “O’Reilly Media, Inc.”.

11. Bau J, Bursztein E, Gupta D, Mitchell J (2010) State of the art: Automated black-box web application
vulnerability testing. In Security and Privacy (SP), 2010 IEEE Symposium on (pp. 332–345). IEEE.

12. Doupé A, Cova M, Vigna G (2010) Why Johnny can’t pentest: An analysis of black-box web vulnerabili-
ty scanners. In Detection of Intrusions and Malware, and Vulnerability Assessment (pp. 111–131).
Springer Berlin Heidelberg.

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 27 / 29

http://dx.doi.org/10.1126/science.1160379
http://www.ncbi.nlm.nih.gov/pubmed/18703711

13. Huang YW, Huang SK, Lin TP, Tsai CH (2003) Web application security assessment by fault injection
and behavior monitoring. InProceedings of the 12th international conference onWorld Wide Web
(pp. 148–159). ACM.

14. Owasp website. Available: https://www.owasp.org/index.php/Main_Page. Accessed 2014 Dec 23.

15. IETF website. Available: http://www.ietf.org/rfc/rfc2828.txt. Accessed 2014 Dec 23.

16. Luk CK, Cohn R, Muth R, Patil H, Klauser A, et al. (2005). Pin: building customized program analysis
tools with dynamic instrumentation. ACM Sigplan Notices, 40(6), 190–200.

17. Hurty WC (1965) Dynamic analysis of structural systems using component modes. AIAA journal, 3(4),
678–685.

18. Ernst MD (2004) Static and dynamic analysis: synergy and duality. In Proceedings of the ACM-SIG-
PLAN-SIGSOFTWorkshop on Program Analysis for Software Tools and Engineering (pp. 35–35).

19. Vamvatsikos D, Cornell CA (2002) Incremental dynamic analysis.Earthquake Engineering & Structural
Dynamics, 31(3), 491–514.

20. Beizer B (1995) Black-box testing: techniques for functional testing of software and systems. John
Wiley & Sons, Inc.

21. Takanen A, Demott JD, Miller C (2008) Fuzzing for software security testing and quality assurance.
Artech House.

22. Arkin B, Stender S, McGraw G (2005) Software penetration testing.IEEE Security & Privacy, 3(1),
84–87.

23. Anley C (2002) Advanced SQL injection in SQL server applications.

24. Boyd SW, Keromytis AD (2004) SQLrand: Preventing SQL injection attacks. In Applied Cryptography
and Network Security (pp. 292–302). Springer Berlin Heidelberg.

25. Spetka S (1994) The TkWWW robot: beyond browsing. In Proceedings of the 2nd.WWWconference
(Vol. 94).

26. Kobayashi M, Takeda K (2000) Information retrieval on the web. ACMComputing Surveys (CSUR), 32
(2), 144–173.

27. Wikipedia website. Available: http://en.wikipedia.org/wiki/Web_crawler. Accessed 2014 Dec 23.

28. Masanès J (2006) Web archiving (pp. I–VII). Berlin: Springer.

29. Hong J (2012) The state of phishing attacks. Communications of the ACM, 55(1), 74–81.

30. Brody RG, Mulig E, Kimball V (2007) Phishing, pharming and identity theft. Academy of Accounting and
Financial Studies Journal, 11(3), 43–56.

31. Tankard C (2011) Advanced Persistent threats and how to monitor and deter them. Network security,
2011(8), 16–19.

32. Downs JS, Holbrook M, Cranor LF (2007) Behavioral response to phishing risk. In Proceedings of the
anti-phishing working groups 2nd annual eCrime researchers summit (pp. 37–44). ACM.

33. Trendmicro website. Available: http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/
white-papers/wp-spear-phishing-email-most-favored-apt-attack-bait.pdf. Accessed 2014 Dec 23.

34. Heydon A, Najork M (1999) Mercator: A scalable, extensible web crawler. World WideWeb, 2(4),
219–229.

35. Shkapenyuk V, Suel T (2002) Design and implementation of a high-performance distributed web crawl-
er. In Data Engineering, 2002. Proceedings. 18th International Conference on (pp. 357–368). IEEE.

36. Castillo C (2005) Effective web crawling. In ACMSIGIR Forum (Vol. 39, No. 1, pp. 55–56). ACM.

37. Schuetze H, Pedersen J (2004) User query generate search results that rank set of servers where rank-
ing is based on comparing content on each server with user query, frequency at which content on each
server is altered using web crawler in a search engine. U.S. Patent No. 6,751,612. Washington, DC: U.
S. Patent and Trademark Office.

38. Su Z, Wassermann G (2006) The essence of command injection attacks in web applications. In ACM
SIGPLAN Notices (Vol. 41, No. 1, pp. 372–382). ACM.

39. Wassermann G, Su Z (2007) Sound and precise analysis of web applications for injection vulnerabili-
ties. In ACM Sigplan Notices (Vol. 42, No. 6, pp. 32–41). ACM.

40. Topuniversities website. Available: http://www.topuniversities.com/university-rankings/world-
university-rankings/2013. Accessed 2014 Dec 23.

41. Darkreading website. Available: www.darkreading.com/attacks-breaches/new-bouncer-list-exploits-
turn-phishing-into-clubbing/d/d-id/1138980?. Accessed 2014 Dec 23.

42. Threatpost website. Available: https://threatpost.com/precision-bouncer-list-phishing-kits-keep-targets-
inside-ropes-011613/77414. Accessed 2014 Dec 23.

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 28 / 29

https://www.owasp.org/index.php/Main_Page
http://www.ietf.org/rfc/rfc2828.txt
http://en.wikipedia.org/wiki/Web_crawler
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-spear-phishing-email-most-favored-apt-attack-bait.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-spear-phishing-email-most-favored-apt-attack-bait.pdf
http://www.topuniversities.com/university-rankings/world-university-rankings/2013
http://www.topuniversities.com/university-rankings/world-university-rankings/2013
http://www.darkreading.com/attacks-breaches/new-bouncer-list-exploits-turn-phishing-into-clubbing/d/d-id/1138980?
http://www.darkreading.com/attacks-breaches/new-bouncer-list-exploits-turn-phishing-into-clubbing/d/d-id/1138980?
https://threatpost.com/precision-bouncer-list-phishing-kits-keep-targets-inside-ropes-011613/77414
https://threatpost.com/precision-bouncer-list-phishing-kits-keep-targets-inside-ropes-011613/77414

43. Securitybistro website. Available: http://www.securitybistro.com/?p=5182. Accessed 2014 Dec 23.

44. Jacob AL, Pillai SK (2003) Statistical process control to improve coding and code review. IEEE soft-
ware, 20(3), 50–55.

45. Cho YC, Pan JY (2013) Multiple-Feature Extracting Modules Based Leak Mining System Design. The
Scientific World Journal, 2013.

46. Cho YC, Pan JY (2013) Vulnerability Assessment of IPv6Websites to SQL Injection and Other Applica-
tion Level Attacks. The Scientific World Journal, 2013.

47. Cavusoglu H, Raghunathan S (2007) Efficiency of vulnerability disclosure mechanisms to disseminate
vulnerability knowledge. Software Engineering, IEEE Transactions on, 33(3), 171–185.

48. Guo F, Yu Y, Chiueh TC (2005) Automated and safe vulnerability assessment. In Computer Security
Applications Conference, 21st Annual (pp. 10-pp). IEEE.

49. Alim S, Neagu D, Ridley M (2011) Axioms for vulnerability measurement of online social network pro-
files. In Information Society (i-Society), 2011 International Conference on (pp. 241–247). IEEE.

50. Exploit-db website. Available: http://www.exploit-db.com/ Accessed 2014 Dec 23.

51. Wooyun website. Available: http://www.wooyun.org/ Accessed 2014 Dec 23.

52. McDermott JP (2001) Attack net penetration testing. In Proceedings of the 2000 workshop on New se-
curity paradigms (pp. 15–21). ACM.

Website Information Disclosure Assessment System

PLOSONE | DOI:10.1371/journal.pone.0117180 March 13, 2015 29 / 29

http://www.securitybistro.com/?p=5182
http://www.exploit-db.com/
http://www.wooyun.org/

