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Abstract 

 

In animal and yeast cells, cell division (cytokinesis) is facilitated by the formation of a 

contractile acto-myosin ring (CAR). Proper CAR formation and constriction is heavily 

reliant on the temporal regulation, phosphorylation, and localization of key proteins. In 

the fission yeast S. pombe, Mid1 is an important dimeric CAR scaffolding protein that 

connects the contractile apparatus to the plasma membrane at the right place and time 

during cytokinesis. Mid1 is confined to both the nucleus and protein assemblies called 

nodes during interphase, and transitions to the cell cortex at mitotic entry as nodes 

mature and coalesce into the CAR. Rad24 is a 14-3-3 protein involved in cell cycle 

checkpoints known to interact with CAR proteins and some of their regulators. 14-3-3 

proteins bind to a conserved consensus phosphorylation motif, RXXpS, which is 

targeted by Sid2 and other NDR-kinases. The Septation Initiation Network (SIN) is a 

conserved signaling pathway to facilitate separation of two new daughter cells. Sid2, the 

terminal kinase of the SIN, has numerous targets in the CAR, including Mid1. Removal 

of Rad24 has distinct consequences on the timing of major cytokinetic events. 

 The goal of this thesis is to use fission yeast to characterize the interaction 

between Rad24 and Mid1, which in turn organizes important CAR components F-actin 

and Myosin II.  Live cell videomicroscopy in rad24∆	cells shows that fluorescently 

tagged Mid1-NeoGreen remains nodal during interphase and returns to the nucleus 

early after CAR constriction. rad24∆ cells also show a delay of F-actin (LifeAct-GFP) 

and myosin-II (Rlc1-tomato) recruitment to the CAR and deferred CAR constriction. In 

vitro binding assays show that Mid1 and Rad24 interact directly and computational 
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structural speculation concludes that this interaction occurs most likely while Mid1 is in a 

monomeric form, after or before nuclear export or import. SIN-dependent 

phosphorylation of Mid1 has definitive consequences on cell division in fission yeast, 

and the conserved nature of protein interactions during cytokinesis in S. pombe 

suggests broader implications for the study of cell division and cancer in higher animals.  
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1 Introduction 

1.1 Overview 

 Cell division is evolutionarily conserved from yeast to humans. The important 

processes that facilitate cell division are shared across highly divergent biological 

kingdoms, such as fungi and animalia. The fission yeast Schizosaccharomyces pombe 

is a rod shaped unicellular eukaryote that grows by elongation at the tips and divides 

medially via a contractile acto-myosin ring (CAR) (Hayles and Nurse, 1989; Chang, et 

al., 1996). The cytokinetic ring, or CAR, is a feature present in both animal and yeast 

cells and is composed of filamentous actin, which also comprises the microfilaments of 

the cytoskeleton, and the motor protein myosin-II (Pollard and Wu, 2010). After 

microtubules, comprised of α and β-tubulin, segregate chromosomes, a pulley system 

between F-actin and myosin-II in the CAR creates the force necessary for cell cleavage 

(Pollard and Wu, 2010) in a process similar to a muscle contraction (Vavylonis, et al., 

2008).  

 Diseases such as cancer involve disruptions to the normal cell cycle. Cell division 

in S. pombe is analogous to the cell division process in human cells, which makes yeast 

a powerful model for the study of cytokinesis and mitosis (Hayles and Nurse, 1989) and 

their possible roles in disease progression. One of the most important cell division 

proteins in S. pombe, Mid1, shows functional as well as structural similarity with its 

human homolog, Anillin (Paoletti and Chang, 2000; Sun, et al., 2015). Interestingly, 

Anillin has been shown to be overexpressed in various human tumors (Hall, et al., 

2005). Therefore, a clear understanding of Mid1’s localization and its role in cell division 
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is important, not only for the general knowledge of how cytokinesis proceeds, but for 

advancing this knowledge to the point that we could find new potential therapies. 

 

1.2 Cytokinesis in Yeast, the Cell Geometry Network, and Mid1 positioning  

 Spatial indicators of cell geometry, mitotic apparatus, and genetic material that 

constitute the Cell Geometry Network (CGN) determine the division plane and CAR 

orientation (Rincon and Paoletti, 2012) in fission yeast cells. Interphase microtubules 

position the nucleus directly in the cell geometrical center (Tran, et al., 2001), and 

DYRK kinase Pom1 organizes SAD serine/threonine protein kinase Cdr2 to define the 

division plane (Martin and Berthelot-Grosjean, 2009). Since S. pombe grows only at the 

cell ends and maintains a constant width throughout cell division, the spatial Pom1 

gradient constitutes an internal sensing mechanism for the yeast cell to monitor its own 

length and volume (Turner, et al., 2012).  Entry into mitosis is dependent on Cyclin-

dependent kinase (Cdk1) activity (Russell and Nurse, 1986), which is inhibited by Wee1 

kinase (Russell and Nurse, 1987), and activated by Cdc25 phosphatase (Gould, et al., 

1990). Cdr2 and Cdr1 are Wee1- inhibitory kinases that are themselves inhibited by 

Pom1 (Bähler and Pringle, 1998). 

 Negative signaling from Pom1 controlling Cdr2 from the cell tips during 

interphase, along with positive signaling from nuclear export of Mid1 at mitotic entry, 

together insure proper division plane placement (Almonacid, et al., 2009). In this sense, 

Cdr2 serves as a mitotic activator that is localized to the middle of the cell, and Pom1, 

serving as an inhibitor of Cdr2, is arranged in a gradient originating from the cell ends 

(Martin and Berthelot-Grosjean, 2009; Almonacid, et al., 2009; Moseley, et al., 2009).  
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As the cell grows, the amount of inhibitor interacting with the activator decreases, 

leading to an increase in Cdk1 activity, which drives mitosis (Deng, et al., 2014). Mid1 is 

an important scaffolding protein that recruits CAR precursors, regulatory elements, and 

subsequently F-actin and myosin-II, to the division site in fission yeast cells (Wu, et al., 

2003).  

                          
Figure 1. Mid1 is an important scaffolding protein for correct positioning of the division site. 
Fission yeast cells stained with methyl blue to show cell walls and DAPI to show nuclei. Cells lacking 
Mid1 have misshapen or tilted septa (S)  that do not form in the center of the cell; they also contain 
multiple septa and nuclei (N).  
 
 
 Mid1 is essential in anchoring the CAR to the cell membrane in the correct place 

and time during the cell cycle (Sohrmann, et al., 1996). In the absence of Mid1, the 

septum becomes positioned randomly and at tilted angles (Figure 1), even though the 

nucleus is positioned normally, indicating that Mid1 is required to unite the location of 

the nucleus with the division site (Chang, et al., 1996). However, CAR assembly in 

these mid1∆ mutant cells can still proceed via actomyosin filaments through a signaling 

cascade called the Septation Initiation Network (SIN) rather than by the formation of a 

cortical network of CAR proteins (Hachet and Simanis, 2008). Even though mid1∆ cells 

are able to eventually divide via these overlapping cytokinetic mechanisms, there are 

distinct consequences in the morphology of the CAR and timing of CAR assembly due 

to the lack of mid1 (Saha and Pollard, 2012a). SIN signaling is important in initiating 
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septation, the last stage of cytokinesis, and recent connections have developed 

between the CGN and the SIN (Rincon, et al., 2017). In this respect, both of the major 

pathways that regulate division plane positioning, the CGN and the SIN, intersect 

through interactions with Mid1 (Rincon and Paoletti, 2012). 

 

1.3 Nodes and CAR Recruitment during the Cell Cycle 

                                   

Figure 2. The Cell Cycle. The series of events that occur during cell division to duplicate DNA and 

produce two daughter cells. G1, S, and G2 are growth and DNA synthesis phases collectively termed 

interphase. Mitosis, when chromosomes condense and are separated, occurs during M phase, and 

cytokinesis occurs during the late stages of mitosis.  

https://sites.google.com/site/celldivisionhotran/regulation-of-cell-cycle 

 

 The cell cycle contains four stages (Figure 2). G1, S and G2, collectively termed 

interphase, are when the majority of cell growth occurs and DNA in chromosomes is 

duplicated. The fourth stage, mitosis, is separated into prophase, anaphase, 
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metaphase, and telophase. Cytokinesis is the process after mitosis by which a cell and 

its cytoplasmic contents divide to become two daughter cells. During interphase the 

actin cytoskeleton accumulates as patches and cables in the growing cell tips, and is 

reorganized during CAR assembly to concentrate at the cell cortex during metaphase 

(Marks, et al., 1986). When cells enter mitosis, elongation stops and the actin and 

tubulin cytoskeletons are reorganized in preparation for cytokinesis (Marks, et al., 

1986). Chromatin condensation and chromosome separation take place during mitosis 

and directly precede cytokinesis, when CAR constriction and cell septation occur.  

 There are two types of heterogeneous protein assemblies called nodes in S. 

pombe, which contain precursors for formation of the CAR (Wu, et al., 2006). During the 

cell cycle, these two distinct node types eventually fuse to be called cytokinetic nodes  

                 
Figure 3. Mid1 and Nodes 
Mid1 Localization during the cell cycle. Type I node placement and Type II node migration are also 
shown. Adapted from Rincon and Paoletti, 2016.  
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and are organized by Cdr2 in cooperation with Mid1 as it recruits all the necessary 

proteins to form the functioning machinery of the CAR (Figure 3). 

 Type I nodes contain Cdr2 as well as Mid1, and are confined to the cell cortex 

(Akamatsu, et al., 2014). During interphase, a small amount of Mid1 is shuttled between 

the nucleus and the Type I nodes during early G2, with the majority of Mid1 harbored in 

the nucleus (Paoletti and Chang, 2000). Pom1, as mentioned previously, exerts a 

spatial gradient effect by diffusing from the cell ends to regulate Cdr2 and insure medial 

division plane position (Moseley, et al., 2009). In cells lacking Pom1, Cdr2 spreads 

toward the non-growing tip (Martin and Berthelot-Grosjean, 2011). Mid1 distribution 

follows that of Cdr2, which results in mispositioned septa (Celton-Morizur, et al., 2006; 

Moseley, et al., 2009).  

 Cdr2 deletion partially rescues the division plane position defects seen in pom1Δ 

cells despite the presence of morphological defects seen in double deletion mutants 

(Lee and Wu, 2012). This may be due to Mid1’s nuclear pool being restored, allowing 

for nuclear position to provide medial division. Cdr2 is a phosphorylation target of Pom1 

in vitro (Martin and Berthelot-Grosjean, 2011) and Cdr2 is hyperphosphorylated in vivo 

when Pom1 is overexpressed (Moseley, et al., 2009). Therefore, the protein interactions 

in Type I nodes are tightly regulated through phosphorylation events, which in turn have 

an effect on Mid1’s localization and ability to anchor the CAR correctly.  

 Type II nodes have a different composition of proteins during interphase, 

including Blt1 (another scaffolding protein), Gef2 (a putative Rho-GEF guanine 

exchange factor), and Nod1 (a Gef2-related protein; Zhu, et al., 2013). Type II nodes 

arise from the previous contractile ring remnants on the new end (NE, Figure 3) of the 
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cell and diffuse back to the center where the stationary Mid1-containing Type I nodes 

capture them in mid to late G2 (Akamatsu, et al., 2014).  

 In late G2, Type II nodes complete their migration to the cortex and Mid1 

facilitates recruitment of key CAR components (Wu, et al., 2006; Laporte, et al., 2011). 

This singles out Mid1 as the only protein that is a component of both types of nodes. 

The remaining nuclear Mid1 is exported from the nucleus into the cytoplasm in late G2 

just prior to mitosis (Bähler, et al., 1998). Mid1 contains one nuclear localization 

sequence (aa691-695), a second, longer region associated with nuclear localization that 

does not contain an NLS (aa450-506), and two nuclear export sequences (NES, aa69-

81 and aa763-773) to modulate nuclear shuttling (Paoletti and Chang, 2000).  

 As Mid1 is exported from the nucleus and becomes associated with the nodes, it 

serves as a spatial cue for CAR recruitment (Almonacid, et al., 2009). Cdr2 binds Mid1 

at the cell cortex (Almonacid et al, 2009) and then gradually dissociates from the nodes 

and becomes cytoplasmic (Akamatsu, et al., 2014). Polo-like kinase Plo1 exhibits 

phosphorylation-dependent control over Mid1’s nuclear export through a possible 

modulation of Mid1’s NES (Almonacid, et al., 2011). The cytokinetic nodes coalesce into 

the CAR when IQGAP protein (actin-binding) Rng2, Myosin II, Rlc1 (myosin regulatory 

light chain), Cdc4 (myosin essential light chain), Cdc12 (formin), and Cdc15 (actin 

regulator) function together to initiate actin filamentation and bundling (Laporte, et al., 

2012). 

 

 

 



 

18	

1.4 Sid2 and the Septation Initiation Network 

 At the onset of ring constriction, Mid1 dissociates from the ring and is shuttled 

back to the nucleus (Sohrmann, et al., 1996) while the rest of the ring components 

facilitate separation through the Septation Initiation Network (SIN) (Krapp, et al., 2004). 

The SIN is a GTPase- mediated signaling cascade (Figure 4) that triggers the onset of 

cell cleavage and begins after the chromosomes have separated and the nucleus has 

divided (McCollum and Gould, 2001). Septation in S. pombe requires the synthesis of a 

new cell wall, which is formed by a tri-layer division septum deposited behind the CAR 

as it is constricting. This septum is composed primarily of α and β(1,3) glucans and is 

formed by at least 3 glucan synthases, whose catalytic subunits are composed of Bgs1, 

Bgs4, and Ags1 (Humbel, et al., 2001). Outward turgor pressure, in combination with 

secreted glucanases to degrade the septum, contribute to the rounding and separation 

of each new daughter cell’s new ends (Cortés, et al., 2012).  

 In S. pombe, the SIN is analogous to the MEN (Mitotic Exit Network) in the 

budding yeast Saccharomyces cerevisiae and the Hippo pathway in humans, which 

functions in cell growth and proliferation (Hergovich and Hemmings, 2012). It has been 

shown that LATS1, the human Sid2 homolog, functions as a tumor suppressor by 

inactivating a proto-oncogene (Hao, et al., 2008; Visser and Yang, 2010) and that 

deletion of LATS1/2 has a role in tumor growth (Moroishi, et al., 2016).  
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Figure 4. S. pombe cytokinesis, Septation Initiation Network (SIN) phenotypes, and the SIN 

cascade. (A) Schematic representation of cell division in S. pombe. In interphase, bundles of 

microtubules (MT) span the length of the cell to position the nucleus medially; for clarity a single MT 

bundle is shown. During interphase Mid1 is localized mainly in the nucleus, with a subset found at the cell 

cortex (nodes). Following entry into mitosis, a spindle is formed and chromosomes are aligned and 

attached to opposite SPBs. Mid1 is exported from the nucleus, and associates with the nodes, together 

with other CAR components. These condense together to form the CAR, which contracts at the end of 

mitosis, guiding septum synthesis. (B) The phenotypic effects of different levels of SIN signaling. Cells 

were stained with DAPI for DNA and Calcofluor for the septum; original images from Simanis, 2003. Wild-

type cells contain a single, medially placed septum. If the SIN does not signal, cells become elongated 

and multinucleated, whereas the cell becomes multiseptated if SIN signaling is constitutively activated. 

(C) Protein kinases required for signaling are shown in dark green, with their respective regulatory 

subunits shown in light green. Scaffolding proteins are shown in blue. Etd1 activates Spg1 through an 

unknown positive regulatory mechanism. Byr4 and Cdc16 are shown in red to represent their negative 

regulatory function. Adapted from Simanis, 2015.  
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 As mentioned previously, Mid1’s proper placement is required during cytokinesis, 

and is tied in closely with SIN signaling to initiate correct division plane location and 

CAR synthesis (Figure 4A; Paoletti and Chang, 2000). mid1∆ mutants form ectopic 

CARs during anaphase when the SIN becomes active (as in Figure 4B), which 

reinforces Mid1’s importance in directing CAR assembly at the right place (Chang, et 

al., 1996; Sohrmann, et al., 1996). Inactive SIN mutants form a CAR in early mitosis that 

dissipates in anaphase, which suggests that SIN signaling is required in late mitosis for 

CAR assembly and maintenance (Balasubramanian, et al., 1998).  

 SIN signaling originates from the spindle pole bodies (SPBs) to regulate the 

onset on cytokinesis and septation (Johnson, et al., 2012; Sparks, et al., 1999). The 

spindle pole bodies are the main microtubule-organizing center (MTOC) in yeast and 

are analogous to centrosomes in animal cells.  SPBs delineate the mitotic spindle and 

bipolar chromosome segregation to both daughter cells during telophase in cell division. 

 Scaffolding proteins Sid4 and Cdc11 function together (Figure 4C) to assemble 

the other SIN components at the SPBs (Chang and Gould, 2000). Byr4 and Cdc16 are 

partners in a GTPase-activating protein (GAP) complex that negatively regulates 

GTPase Spg1 at the top of the SIN cascade (Figure 4C; Fankhauser, et al., 1993; Song, 

et al., 1996; Furge, et al., 1998; Balasubramanian, et al., 1998). Inactivation of Byr4 or 

Cdc16 results in hyperactive SIN signaling, multiseptated cells, and decoupling of 

cytokinesis from the rest of the cell cycle (Minet, et al., 1979). In contrast, the cytokinetic 

failure that results from insufficient SIN signaling causes elongated multinucleate cells, 

the morphology of which is typically referred to as the SIN phenotype (Figure 4B; Nurse, 

et al., 1976).  
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 During interphase, kinases Cdk1 and Plo1 (Figure 4C) phosphorylate Byr4 to 

inhibit GAP activity, which activates the SIN (Rachfall, et al., 2012). Spg1 activation 

during mitosis by Etd1 (Ethanol-dependent mutant protein 1) sets forth a cascade of 

three kinases - PAK-related GC kinase Sid1, and serine/threonine NDR (AGC) kinases 

Sid2 and Cdc7 (Krapp and Simanis, 2008). Etd1 is thought to act as a tie between the 

CAR and the SIN, and is required for localization of SIN kinases to the SPB and CAR in 

anaphase (Daga, et al., 2005).  

 During anaphase when Cdk1 activity is low, Sid1 gathers asymmetrically on the 

SPBs to activate Sid2 (Guertin, et al., 2000; Sparks, et al., 1999). Sid2 and its activator 

and binding partner, Mob1, then move to the CAR and initiate constriction (Hou, et al., 

2004 and Sparks et al, 1999). Plo1 transiently associates with the CAR early in mitosis 

(Bähler et al., 1998), while Sid2-Mob1 associate with the CAR in mid-late anaphase 

(Hou, et al., 2000). It is worth noting that Plo1 regulates both Mid1 and the SIN 

(Almonacid, et al., 2011; Mulvihill and Hyams, 2002) and that Plo1 is thought to regulate 

SIN-mediated CAR formation in the absence of Mid1 (Roberts-Galbraith and Gould, 

2008). The Sid2-Mob1 kinase complex is thought to transmit the cell division signal from 

the SPB to the CAR, since it accumulates at the division site immediately prior to 

cytokinesis (Hou, et al., 2003 and Sparks, et al., 2009). In mutants where both Mid1 and 

SIN function are compromised, no CAR will form (Hachet and Simanis, 2008).  

 In fission yeast, Sid2 is the terminal kinase of the SIN (Sparks, et al., 1999) and 

like other NDR kinase family members, phosphorylates conserved sites containing a 

consensus RXXpS sequence (Mah, et al., 2005). In SIN-hyperactive mutants, Type I 
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nodes dispersed from the cell cortex earlier than normal, which is suggestive of SIN-

mediated control over the assembly of Type I nodes (Pu, Akamatsu, and Pollard, 2015). 

 Sid2 plays a role in Cdr2 dissociating from the Type I nodes during interphase 

before CAR assembly (Rincon, et al., 2017). This precedes Mid1’s separation from the 

fully assembled CAR in late anaphase, at CAR constriction onset. Unpublished data 

from the Hart lab at GVSU has shown that Sid2 also phosphorylates Mid1(DeWitt, 

Gould, and Hart; article in progress), which could play a role in Mid1’s dissociation from 

the CAR after mitosis.  

 The localization of Mid1 in SIN mutants (Figure 5) shows that when the SIN is 

hyperactive, as in the cdc16-116 mutant strain, Mid1-GFP is localized in the nucleus, 

which suggests that hyperphosphorylation of Mid1-GFP results in a higher fraction of 

Mid1-GFP shuttling back to the nucleus, or that Sid2 phosphorylation is required for 

nuclear export. In inactivated SIN mutants such as sid2-250, (Figure 5), Mid1-GFP 

appears to be stuck at nodes and unable to organize the CAR for constriction initiation.  

Both major pathways that regulate division plane positioning, the CGN - through Cdr2 

interacting with Mid1 in Type I nodes - and the SIN - through the SIN’s terminal kinase,  

Sid2, phosphorylating Cdr2 (Rincon, et al., 2017) and Mid1 (DeWitt, Gould, and Hart; 

article in progress) - converge with Mid1 (Rincon and Paoletti, 2012). 
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Figure 5. Mid1 localization in SIN mutant phenotypes. In hyperactive SIN strain cdc16-116, Mid1-GFP 

remains nuclear and multiple septa are formed, with an absence of Mid1-GFP at the CAR. In SIN inactive 

strain sid2-250, Mid1-GFP is stuck at nodes and CAR is not able to form. Scale Bar = 10 µm.  

From DeWitt, Gould, and Hart, article in progress; and Johnson, et al., 2012.  

 

1.5 14-3-3 Proteins and Cell Cycle Checkpoints 

 Cytokinesis proceeds through tightly controlled mechanisms that ensure proper 

chromosome segregation. The cell cycle is regulated by cyclin-dependent 

serine/threonine kinases (CDKs) with checkpoints at G1, G2/M (G2 to mitosis 

transition), and M (metaphase) (Barnum and O’Connell, 2014). CDKs bind to regulatory 

proteins known as cyclins, and CDK-cyclin complexes regulate downstream targets in 

cell cycle progression. The M regulatory checkpoint, also known as the spindle or 

cytokinesis checkpoint, is a mechanism that can halt cell division in metaphase to 
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prevent cytokinesis until chromosome separation has correctly occurred in anaphase 

(CAR checkpoint, Figure 5A). The M checkpoint was discovered through a study of 

β(1,3) glucan synthase catalytic subunit mutant bgs1 (Le Goff, et al., 1999). Some bgs1 

mutants fail to form septa even though they are able to complete mitosis. The bgs1 cells 

arrest with an interphase microtubule configuration, with nuclei centered in what would 

be the two daughter cells (Liu, et al., 2000). Each nuclei in these cells are able to go 

through S phase, but the nuclei are stalled in G2 and are unable to continue through the 

M phase, even though the CAR has formed. This is indicative that a failure to complete 

some aspect of cytokinesis prevents cell cycle progression though mitosis.  

 In eukaryotic cells, 14-3-3 proteins are highly conserved regulatory molecules 

that have a variety of ligands including kinases, phosphatases, and transmembrane 

receptors (Hermeking and Benzinger, 2006; for review). 14-3-3 proteins have also been 

previously shown to be involved in cell cycle checkpoints (Ford, et al., 1994). In S. 

pombe, Rad24 is a 14-3-3 protein implicated in correct cell cycle checkpoint progression 

though its binding to a phosphorylated cyclin-dependent phosphatase Cdc25 (Zeng and 

Piwnica-Worms, 1999).  Both replication checkpoint kinases Cds1 and Chk1 kinases 

regulate the binding of Cdc25 to 14-3-3 proteins as part of the checkpoint response to 

unreplicated DNA (Zeng, et al., 1998). Chk1 functions redundantly with the kinase Cds1 

at the replication checkpoint and both kinases phosphorylate Cdc25 on the same sites, 

which include serine residues at positions 99, 192 and 359. Mutation of these residues 

reduces binding of Rad24 to Cdc25 in vitro and disrupts the replication checkpoint in 

vivo (Zeng, et al., 1998). Rad24 and other 14-3-3-proteins bind to the phosphorylated 

Sid2 consensus sequence, RXXpS (Muslin, et al., 1996) in an amphipathic binding cleft. 
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Potential Sid2 targets were previously identified by comparing proteins that associate 

with Rad24 when the SIN is turned on or off, revealing coordination between 

mechanisms of the SIN and the other conserved NDR kinase pathway in S. pombe, the 

MOR pathway (Gupta, et al., 2013). While 14-3-3 proteins were first identified for their 

role as checkpoint regulators, they interact with binding partners at all stages of cell 

division, and play diverse regulatory roles. 

 

1.6 Previous work with Sid2 Phosphomutants 

 In addition to scaffolding the CAR precursors, Mid1 has been shown to interact 

with Clp1 (Clifford, et al., 2008), a phosphatase and regulator of mitotic exit in S. pombe 

(Chen, et al., 2008). Clp1 dephosphorylates substrates of cyclin-dependent kinase 

(Wolfe, et al., 2006), and is regulated in part through its localization during the cell cycle 

(Chen, et al., 2008).  Previous research has shown that Sid2 phosphorylation provides a 

binding site for Rad24, which sequesters Clp1, to the cytoplasm during mitosis (Mishra, 

et al., 2005). Mutation of six serines in the Sid2 phosphorylation sites to alanine 

disrupted Rad24 binding, and resulted in Clp1 returning to the nucleus prematurely 

when compared to wild-type cells (Chen, et al., 2008). This work demonstrated that 

Sid2 phosphorylation is required for Rad24 to bind to Clp1, and Rad24 is necessary for 

temporal regulation of CAR assembly and constriction during cytokinesis (Chen, et al., 

2008).  

 Another target of the SIN, the formin Cdc12, is present in the CAR. Sid2 

phosphorylation is needed for initiation of actin bundling by Cdc12 during CAR 

assembly (Bohnert, et al., 2013), and the mutation of phosphorylation sites on Cdc12 
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results in impaired CAR formation. Actin regulator Cdc15 also requires SIN function to 

associate with the CAR (Hatchet and Simanis, 2008), although it is unknown whether 

Sid2 phosphorylates Cdc15 directly. However, there have been 13 RXXS sites identified 

on Cdc15 that could bind Rad24 even if Sid2 is not the kinase involved (Roberts-

Galbraith, et al., 2010). It is highly likely that there may be other targets of SIN function, 

or Rad24 binding partners, located in the CAR.  

 A recent study revealed that Rad24 interacts with Cdr2 upon Sid2 

phosphorylation and sequesters Cdr2 in the cytoplasm during cell division, and that 

Cdr2RXXS-2A phosphomutants demonstrated a reduced interaction with Rad24 (Rincon, 

et al., 2017). This study also showed that in rad24∆ cells, Cdr2-mEGFP did not leave 

the cell cortex during mitosis, was redistributed from the medial cortex toward the cell 

tips, and that intensity of Cdr2-mEGFP did not increase in the cytoplasm during mitosis. 

It instead diminished similarly to Cdr2RXXS-2A -mEGFP on the medial cortex due to lateral 

spreading toward cell tips (Rincon, et al., 2017), confirming that Cdr2 localization is 

specifically dependent on Sid2 phosphorylation and Rad24 binding.  

 Previous research has also shown that Cdr2 anchors Mid1 at the cortex through 

interaction with a sequence in the midpoint of Mid1 (aa400-450) (Almonacid, et al., 

2009), a region of the Mid1 protein that is also where the Sid2 phosphorylation sites are 

located. Sid2 phosphorylates Cdr2 at Rad24 consensus binding sites to release it from 

the cell cortex in a 14-3-3-dependent manner (Rincon, et al., 2017). Cdr2 association 

with Rad24 re-localizes it to the cytoplasm and resets the division plane for the next 

round of cytokinesis (Rincon, et al., 2017). 
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 An unpublished study (DeWitt A, Schneider P, Foxa G, Gould K, and Hart D; 

article in progress) also determined that Sid2 phosphorylation might modulate binding of 

Importin1 (Imp1), which facilitates Mid1’s re-localization to the nucleus. To test the 

importance of Sid2 phosphorylation on Mid1, a Mid14RXXSA phosphomutant cell line was 

generated with serine mutated to alanine in four Sid2 phosphorylation sites (S329, 

S432, S464, and S531). When Sid2 phosphorylation is diminished, Mid14RXXSA 

concentrates in the nodes during interphase and remains cytoplasmic during CAR 

constriction instead of migrating back to the nucleus (Figure 6, panel A2). Mid14RXXSA 

could potentially be stabilized at the nodes due to the NLS near the amphipathic helix 

being buried inside the plasma membrane and obscured from Imp1 (DeWitt A, 

Schneider P, Foxa G, Gould K, and Hart D). Mid14RXXSA phosphomutants also began 

cytokinetic events much earlier than WT, and exhibited CAR formation defects (DeWitt 

A, Schneider P, Foxa G, Gould K, and Hart D; data not shown). Mid1 depends on Sid2 

phosphorylation for dispersal from the division site and nodes, but further elucidation is 

needed to show how Mid1 is retained in the cytoplasm until mitotic exit. 

 

1.7 Role of Rad24 binding in Mid1 localization 

 Sid2 phosphorylation could also be important in placing Mid1 at key locations 

during the cell cycle by other means. Rad24 and Mid1 were isolated together in tandem-

affinity purification and are known to interact through an unknown mechanism. Sid2 

phosphorylation could facilitate direct binding of Rad24 to Mid1, sequestering it in the 

cytoplasm until the CAR has properly formed, to ensure that cytokinesis is temporally 

regulated. Rad24 could also stabilize Mid1 oligomers, as there is evidence that only the 
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monomeric form of Mid1 can be imported to the nucleus (Sun, et al., 2015). Additionally, 

Rad24 and Imp1 could compete to bind Mid1, creating distinct populations of Mid1 with 

either Rad24 or Imp1 bound, sending Mid1 to different sites in the cell during division. 

 

                     

Figure 6. Mid1 in phosphomutant and rad24Δ	cells: Mid1 shows higher localization to the nucleus 
in cells lacking rad24. (A) Mid1-GFP and Mid14RXXSA-GFP localization in rad24-deleted cells. WT Mid1-
GFP cells show a clear Mid1-containing CAR. Mid14RXXSA -GFP is localized to cortical nodes. rad24-
deleted cells show a concentration of Mid1 in the nucleus. rad24Δ Mid14RXXSA -GFP mutants show a 
cytoplasmic dispersion of Mid1. (B) Mid1 locations in the averaged percentage of cells counted within the 
corresponding cell types from two experimental replicates.  
Ashley DeWitt and Dawn Clifford Hart, unpublished. Scale bar = 10 µm.  
 
 These functions are, in effect, switched in Mid14RXXSA phosphomutant. In 

preliminary unpublished analysis of rad24Δ cells, Mid1-GFP accumulates in the nucleus 

(Figure 6 panel A3). Mid14RXXSA -GFP is localized to the cytoplasm, specifically the 
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nodes and cortex, when Imp1 fails to bind as compared to Mid1-GFP nuclear 

concentration when there is no rad24 (Figure 6, panel A2 vs. panel A3). We 

hypothesize that the phenotype in Figure 6, panel A4 is due to both reduced Sid2 

phosphorylation and the absence of rad24 disrupting both nuclear import and Mid1-GFP 

(and Mid14RXXSA -GFP) localization, leading to overall cytoplasmic dispersion of Mid1. 

The lack of rad24 may allow Mid1 to be returned to the nucleus early even though Sid2 

has phosphorylated it, so perhaps this is due to increased Imp1 binding with no Rad24 

to compete. 

 During interphase Mid14RXXSA -GFP remains only in the nodes, instead of in both 

the nucleus and nodes (Figure 6, panel A2). Double rad24Δ Mid14RXXSA -GFP mutants 

show an overall cytoplasmic dispersion of Mid1, which suggests that Sid2 

phosphorylation plays a role in nuclear localization as well as Rad24 binding (Figure 6, 

panel A4). These data suggest a compelling role for Rad24 binding in Mid1 localization, 

through either an indirect or direct interaction between Mid1 and Rad24, and that Rad24 

could play a role in transitioning Mid1 through its various oligomerization states.  

 

1.8 Mid1 Structure and Oligomerization 

 A recent structural study (Sun, et al., 2015) revealed that both anillin and Mid1 

contain a C2 domain, a β-sandwich composed of 8 β-strands (PFAM ID #PF00168). C2 

domains are involved in targeting proteins to cell membranes, usually in a Ca2+ -

dependent manner (Ponting and Parker, 1996). Anillin requires a Rho (Ras homolog) 

GTPase called RhoA (Figure 7A) for anchorage to phosphatidylinositol 4,5-

bisphosphate (PI(4/5)P2), a phospholipid component of the plasma membrane (Liu, et 
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al., 2012; Oegema, et al., 2000). RhoA is activated by Ect2, a guanine nucleotide 

exchange factor (RhoGEF) (Tatsumoto, et al., 1999). RhoA, together with a long 

disordered loop (aa 888-933) between β5 and β6 strands of the C2 domain, act 

synergistically with the PH (Pleckstrin Homology) domain to bind anillin in place (Sun, et 

al., 2015). C2 domains typically contain three Ca2+-binding specific loops, and anillin’s 

long disordered loop corresponds to the third Ca2+-binding loop (L3) of a typical C2 

domain (Malmberg, et al., 2003; Figure 7A, orange dotted line). However, Ca2+ did not 

promote anillin to bind to lipids, and deletion of this loop abolished the lipid binding 

ability altogether (Sun, et al., 2015). Targeting to PI(4/5)P2 may be mediated by eight 

positively charged and four hydrophobic residues within this loop rather than Ca2+, 

indicative that anillin’s C2 domain lacks Ca2+ binding ability in  (Sun, et al., 2015).  

                    
 
Figure 7. Protein structures of Anillin and Mid1. 
(A) RhoA, the C2 domain, and the PH domain of Anillin act synergistically to bind PI(4,5)P2 in the plasma 
membrane (PDB ID # 4XOI). (B) Mid1 dimerizes by interactions between C2 domains while the L3 loop of 
the C2 domain binds to PI(4,5)P2 in the plasma membrane. Mid1 N-terminus is anchored to the plasma 
membrane further via Gef2 (PDB ID # 4XOH). From Sun, et al., 2015. 
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 In S. pombe, GTPase is not required to tether Mid1 to the plasma membrane, so 

there is no Rho Binding Domain (RBD), and deletion of the PH domain does not disrupt 

normal cytokinesis (Lee and Wu, 2012). Instead, Mid1 dimerizes at the C2 domain 

(Figure 7B) to enhance binding to PI(4/5)P2 as Gef2 facilitates placement at the division 

plane by interacting with Mid1’s N-terminus (Ye, et al., 2012).  

 The N-terminal portion of anillin binds myosin II and IQGAP protein Rng2 (Eng, 

et al., 1998). A hybrid protein expressing the N-terminal portion of Mid1 and the C-

terminal portion of anillin rescued the cytokinetic defects of anillin deletion. This, in 

addition to C2 domain membrane anchorage and the presence of PH domains, 

suggests that Mid1 and anillin evolved from a common ancestor and are homologous 

proteins (Sun, et al., 2015). The connector domain (Figure 8A, shown in red), not 

present in anillin, serves to attach both termini of the PH domain and pack them against 

the C2 domain (Sun, et al., 2015).   

 The amphipathic L3 loop (RKFFDKLF, aa 681-688) of the C2 domain (Figure 8A) 

stabilized by a nearby NLS (aa 691-695), anchors Mid1 to the cell membrane at the 

cortex (Figure 8C; Celton-Morizur, et al., 2004). It has been previously predicted that the 

Mid1 C2 domain L3 loop contains an amphipathic helix (shown in 8A and 8C), which, 

when bound to the cell membrane, obscures the NLS sequence to prohibit Mid1 nuclear 

accumulation (Celton-Morizur, et al., 2004). It is important to note that this amphipathic 

L3 loop (aa 681-709) was deleted from the protein to allow for crystallization (Sun, et al., 

2015) so whether this region’s architecture is a loop or helix remains unknown.  
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Figure 8. Mid1 dimerization interface and protein domain schematic.  
(A) Interaction interface between C2 domains in Mid1. Dimers form through hydrogen bonds along the β3 
and β4 strands. (B) Close up of additional hydrophobic contacts stabilizing the Mid1 dimer. (C) Schematic 
of Mid1 domains and their functions. Adapted from Sun, et al., 2015 and DeWitt A, Gould K, and Hart D. 
 

 Dimerization through the C2 domain is not common in other C2 domain 

containing proteins, including anillin (Nalefski, et al., 2001). Crystal structures of Mid1 

(PDB ID# 4XOH) show almost identical interfaces on the C2 domain where dimerization 

occurs. The interaction between C2 interfaces occurs mainly through hydrogen bonding 

on main chains between the β3 and β4 strands, but dimer stability is enhanced by 
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hydrophobic contacts in the β4 strand (Figure 8B). Dimerization in this way results in 

two amphipathic L3 loops anchoring Mid1 to the plasma membrane (Sun, et al., 2015).  

                                             
Figure 9. Dimerization of Mid1 is important for localization. Monomeric (mid13A) remains nuclear 
during interphase and if cytoplasmic, does not remain concentrated in the medial region where PI(4/5)P2 
would be concentrated. In contrast, WT Mid1 localizes to the medial region (nodes) of the cell during 
interphase. From Sun, et al., 2015. 
 

 Analysis of cells expressing a mutant monomeric mid13A, in which Met616, 

Leu618, and Pro619 in the dimerization interface were mutated to alanine, shows that 

dimerization is needed for Mid1 to concentrate at the cell cortex during cytokinesis. 

During interphase, monomeric mid13A remained localized in the nucleus even though 

the CAR positioning and morphology was normal, and cytokinesis proceeded 

accordingly (Sun, et al., 2015; Figure 9, right). This could be because of redundant 

pathways involved in cell division or maybe that there was enough Mid1 present, or 

monomeric mid13A binding was sufficient, to tether the CAR. In contrast, WT Mid1 

localized to the cell cortex and nodes during interphase (Figure 9, left). Monomeric 

mid13A was shown to have a low affinity for PI(4/5)P2. When both Mid1’s interaction 

with the plasma membrane and its dimerization ability were disrupted by creating 

double mid13A gef2Δ mutants, strong CAR placement defects and septation difficulties 

were observed, suggesting that dimerization of Mid1 enhances affinity for PI(4/5)P2 

(Sun, et al., 2015). Interestingly, PI(4/5)P2 has been previously shown to be enriched at 
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the cell division site (Zhang, et al., 2000), and its location there may help recruit extra-

nuclear Mid1 to the division plane. 

 If dimerization of Mid1 increases affinity to PI(4,5)P2 and obscures the nuclear 

localization sequence (NLS) sequence (Sun, et al., 2015; Celton-Morizur, et al., 2004), 

then the decreased affinity of monomeric Mid1 for PI(4,5)P2 could make the NLS more 

available and could contribute to Mid1’s accumulation in the nucleus in mutant mid13A 

cells. Since mid13A concentrates in the nucleus and we know this mutant fails to 

oligomerize, and we see the same phenotype in rad24-deleted cells, Rad24 may be 

playing a role in dimerization or stability of Mid1 conformation that retains Mid1 in the 

cytoplasm. Changes in Mid1 oligomeric status may also be impeded without Sid2 

phosphorylation. While the various phosphorylation effects seen on Mid1 seem like 

opposite problems that lead to the same effect on the CAR, maybe neither mid13A or 

mid14RXXSA can transition through the needed oligomerization states. Rlc1 was recruited 

to the CAR early in mid14RXXSA mutant cells, and this contributed to impairment of CAR 

assembly, disordered CAR structures, and accelerated CAR constriction (DeWitt A, 

Gould K, and Hart D; article in progress).  

 Interestingly, CAR assembly was also faster in cells expressing monomeric 

mid13A than in wild-type cells (Sun, et al., 2015), but rates of CAR constriction were the 

same. There are definite phenotypic similarities seen between the monomeric mid13A 

and rad24-deleted cells.  

 Although the proteins and sequence of events involved in the cell cycle of fission 

yeast are well documented, the temporal and spatial details governing cell division are 

not well understood. Characterizing Mid1’s interaction with Rad24 could possibly 
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connect oligomer stability of Mid1 to Rad24 binding. The Sid2 phosphorylation sites are 

in a central area of Mid1 that is known to oligomerize (aa309-453; Celton-Morizur, et al., 

2004), rather than in the now-known dimerization site of the C2 domain (aa616-635). 

Mid14RXXSA phosphomutants could be demonstrating weakened dimerization due to 

Rad24 binding failure. Mid1 dimerization or octomerization could partially account for 

stabilization at the cell cortex during cytokinesis, as monomeric Mid1 is localized in the 

nucleus (Sun, et al., 2015). Similar results were obtained in our preliminary data with 

rad24Δ cells.  

 

1.9 Hypothesis  

 Since Mid1 is known to form at least dimers (Sun, et al., 2015), and was shown 

to form octomers in sedimentation studies (Saha and Pollard, 2012b), it may be 

possible that Rad24 could stabilize Mid1 oligomers. There may be several “stages”	of 

oligomerization that Mid1 passes through - nuclear Mid1 may be only monomeric, Mid1 

dimers could provide enough stabilization for node formation at the cell membrane, and 

the higher orders of Mid1 oligomerization could occur during CAR assembly and 

maturation, where additional stability would be required to bolster scaffolding. Mid1 

oligomerization in this capacity would also require a “disassembly”	mechanism to 

disassociate Mid1 oligomers from the CAR during constriction when/where it is no 

longer needed. This would help explain why in rad24Δ mid14RXXSA -GFP double mutant 

cells, Mid14RXXSA-GFP is not binding to the nodes or being returned to the nucleus. Sid2 

phosphorylation sites are located in the same region of Mid1 as oligomerization occurs, 
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which could relate to the Sid2 phosphorylation required for Mid1 to disperse from the 

division site.  

 We hypothesize that phosphorylation allows the NLS to become available and 

that Rad24 may play a role in oligomerization. In order to shed light on Rad24’s 

involvement in this process and how it could sequester Mid1 in the cytoplasm, the focus 

of this thesis is to clarify the nature of Rad24 and Mid1’s interaction. We hypothesize 

that this interaction could be direct, indirect, preferential to oligomers, and/or competitive 

with nuclear import proteins.  

1) Direct, such as a change in the Mid1 oligomer conformation when Rad24 binds, or 

perhaps Rad24 favors binding to particular oligomer conformations.  

2) Indirect, Rad24 and Mid1 could interact via a third party connector protein. 

3) Rad24 binding preferentially to Mid1 oligomers could shift equilibrium towards 

oligomers and in effect reduce Mid1’s translocation to the nucleus.  

4) Rad24 could compete for the same binding pocket as Importin 1, which would also 

reduce Mid1’s translocation to the nucleus.  
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2 Methods 

2.1 Strains and Media 

 The S. pombe strains used in this study were grown in YE media, at 18°C, 25°C, 

or 32°C according to strain growth specifications. S. pombe yeast strains containing 

fluorescently tagged Mid1 (Mid1-GFP or Mid1-NeonGreen), F-Actin (LifeAct-GFP), and 

myosin regulatory light chain (Rlc1-tomato) were crossed into existing rad24-delete 

strains. New yeast strain crosses were created by random spore analysis. A toothpick 

was used to collect cells from the two strains containing tagged loci, one from each 

mating type, h- and h+. The cells were mixed together in 5µl sterile water on the same 

glutamate (E) plate in a 1cm2 area. The S. pombe sporulation and mating phase can 

only be induced under nutrient starved conditions. Glutamate (E) plates lack nitrogen 

and contain 1g/L of sodium glutamate. Newly formed zygotes enter meiosis immediately 

and sporulate, producing four spores in a tetrad ascus. Crosses were incubated at 25°C 

for 4 days on E plates until growth was evident, then examined for tetrads under light 

microscopy. Zygotic asci (diploid produced through conjugation of two mating types) 

can be distinguished from azygotic asci (sporulation of a heterozygous diploid strain) by 

the curvature of the ascus and separation of the spores. 

 Because mating and meiosis are linked in S. pombe, random spore analysis 

does not require isolation of a diploid. Vegetative cells were killed off by mixing 500 µl of 

sterile water, a pipette tip full of cells from the mating E plate, and 10 µl of glusulase (a 

snail gut enzyme). The cells were incubated overnight at 25°C in a shaking incubator, 

then washed with 30% ethanol and sterile water. A 1:1000 dilution was plated on a 
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standard YE plate and incubated at 25°C, and new yeast strains were replica plated on 

selective media plates once colonies formed.  

 To select only colonies that are unable to express Rad24, mutant rad24∆ strains 

were engineered to express uracil in place of Rad24 (rad24::ura4 mutation). After 

sporulation of new strains, cells were plated on MAL selective plates. MAL is minimal 

media containing leucine and adenine, but no uracil. Only colonies able to produce 

uracil in place of Rad24 will be able to grow on selective MAL plates. Other tagged loci 

co-express a kanamyacin or nourseothrycin resistance gene, and strains containing 

these loci were additionally plated on G418 or NTC (nourseothrycin N-acetyl 

transferase) plates for selection. The LifeAct-GFP strain co-expresses leucine (LifeAct-

GFP:Leu mutation) and these strains were additionally selectively plated on MAU –	

minimal media containing adenine and uracil, but no leucine, and only colonies able to 

grow on both MAU and MAL separately were selected for use in this study.  

 Genotypes were confirmed by whole-cell PCR with primers specific to particular 

tags or genes of interest (Table 1), or by visual confirmation using the confocal 

microscope. For whole-cell PCR, a toothpick was used to pick a colony from new 

strains, and added to 20µl master mix containing primers, GoTaq polymerase 

MasterMix (Promega, #M7122), and sterile water. PCR program details are as follows: 

Lid, Hold at 105°C; 1-95°C 10 min.; 2-95°C 45 sec.; 3-60°C 1 min.; 4-72°C 1 min.; 5-Go 

to 2 repeat 11X; 6-95°C 45 sec.; 7-50°C 45 sec.; 8-72°C 1 min.; 9-Go to 6 repeat 24X; 

10-72°C 8 min.; 11-Hold at 4°C.    

 All new S. pombe strains also contain a fluorescently tagged spindle pole body 

marker, Sid4-RFP. Sid4 is a scaffolding protein and a component of the SIN pathway. 
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Tracking the SPBs throughout cell division delineates the mitotic spindle and bipolar 

chromosome segregation, and is a way to monitor the cells progression through the cell 

cycle. 

 

Table 1    PCR Primers used in this study  

Mid1 1253bp 	 5’-CTTGAACTTTTGCCTGCCCC-3’	 Forward	

Nat    296 bp	 5’- TACGAGATGACCACGAAGCC -3’	 Reverse	

Sid4  1345 bp	 5’	–ACCCAAGCCCGTAAAGAGAT -3’	 Forward	

KanLinkChk	  5’-CGGATGTGATGTGAGAACTGTATCCTAGC-3’	 Reverse	
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Table 2     S. pombe strains used in this study 

Strain# Genotype 
Literature Citation 

0004  nda3-km311 mid1-4RXXS-GFP:kan ade6-M21X leu1-32 ura4-D18 h- 
DeWitt, in progress 

0110 mid1-GFP:kanR sid4-RFP:kanR ade6-M21X leu1-32 ura4-D18, h+ 
DeWitt, in progress 

0143 LifeAct-GFP:Leu ade6-M216 leu1-32 ura4-D18 h+ 
Huang et al., 2012 

0197 
Mid1-Neongreen:kan rlc1-Tomato:nat sid4-RFP:kan ade6-M21X leu1-
32 ura4-D18 h+ 

DeWitt, in progress 

0216 LifeAct-GFP:leu1 sid4-RFP:kanMX6 ade6-m216 leu1-32 ura4-D18, h- 
This study 

0246 ade6-M210, ura4-D18, leu1-32, h- 
Lab Stock 

0251 rad24::ura4+ ura4-D18 leu1-32 ade6-704 h- 
Mishra et al., 2005 

0264 sid2-250 Mid1-GFP:kanMX6 ade6-M21X leu1-32 ura4-D18 h- 
DeWitt, in progress 

0266 rad24::ura4 Mid1-GFP ade6-X leu1-32 ura4-D18 h- 
This study 

0267 rad24::ura4 Mid1-4A-GFP ade6-X leu1-32 ura4-D18 h- 
This study 

0328 cdc16-116 Mid1-GFP:kanMX6 ura4-D18 leu1-32 ade6-M210  
DeWitt, in progress 

0353 
rad24::ura4+ Mid1-GFP:kanR Sid4-RFP:kanR, ade6-M21X leu1-32 
ura4-D18 h+ 

This study 

0354 
rad24::ura4+ Mid1-Neongreen:kanR rlc1-Tomato:natR Sid4-
RFP:kanR, ade6-X leu1-32 ura4-D18 h+ 

This study 

0355 
rad24::ura4+ LifeAct-GFP:Leu Sid4-RFP:kanR, ade6-X leu1-32 ura4-
D18 h- 

This study 

2415 mid1-GFP:KanR ade6-M210 ura4-D18 leu1-32 h+ 
Lab Stock 

3173 mid1-GFP:KanR nda3-KM311 ade6-M210 leu-32 h+ 
Clifford et al., 2008  

8566 
mid1-4RXXSA-GFP(S329, 432, 464, 531):KanR ura4-D18 ade6-M21X 
leu1-32 h+ 

DeWitt, in progress 
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2.2 Confocal Microscopy 

 Confocal microscopy, or Confocal Laser Scanning Microscopy (CLSM), provides 

enhanced optical resolution and depth of focus by using a pinhole aperture to block out-

of-focus light. This point illumination allows for two-dimensional images captured at 

different vertical points of depth throughout an entire specimen to be assembled post-

hoc into a three-dimensional image with the microscope’s software. The vertical plane 

throughout the depth of a specimen is referred to as the Z-plane, as opposed to the 

horizontal X-Y plane, and the collection of images referred to as a Z-stack. 

Figure 10. Concepts of confocal micrcroscopy and Z-plane optical sectioning. Light rays from the 
excitation laser source are focused throughout the z-plane of a sample using dichroic mirrors. Out of 
focus light is excluded via pinhole aperatures and only light emitted from the sample at a designated 
depth is picked up by the photomultiplier detector.  
https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/confocal/confocalintro/ 
 

 After passing through the first pinhole aperture, light from a laser excitation 

source is filtered and positioned using dichroic mirrors (Figure 10). The mirrors focus 

the light across the X-Y plane and within the desired Z-stack section. Only fluorescence 
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emitted from the sample in this particular focal plane are passed through a secondary 

pinhole aperture just before the photomultiplier tube (PMT) detector. A PMT is 

incorporated into the confocal system to amplify any signal lost from the exclusion of 

light outside of the pinhole aperture.  

 Newly constructed rad24-delete and corresponding WT live cells containing 

fluorescently tagged Sid4-RFP, Mid1-GFP, Rlc1-tomato, Mid1-NeonGreen, and/or 

LifeAct-GFP were immobilized on 1-1.5% YE agar pads on the surface of a glass 

microscope slide. A cover slip was placed on each specimen, and sealed in place using 

VELAP - a mixture of Vaseline, lanolin, and paraffin - to prevent agar media from drying 

during the three hours needed for movie collection.  Movies were collected using a 

Nikon A1plus-Rsi scanning confocal microscope system equipped with an Anode PMT 

spectral detector and ORCA-Flash2.8 digital CMOS camera (Hamamatsu). The 

microscope objective used was an oil-immersion 100X objective with a numerical 

aperture of 1.45.  Movies were created from Z-stacks of 14 images, spaced 0.279	µm 

apart, were collected every 60 seconds spanning a 3-hour observation window, giving 

approximately 180 time points per movie. The optical sections were compiled into 

maximum projection 3D images for analysis using the ND processing tool in the 

confocal microscope NIS-Elements software 

(https://www.nikoninstruments.com/Products/Software/NIS-Elements-Confocal). Images 

in figures 16 - 19 were maximum projections converted to 8 bit RGB files for analysis in 

ImageJ software (National Institutes of Health).  

 To track each cell’s progression though the cell cycle, three manual 

measurements of each cell were taken using the spindle pole body (SPB) marker Sid4-
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RFP, also using the ND analysis tool in NIS-Elements. The first measurement was 

taken at initial SPB separation, and indicates “time 0”	in mitosis progression. The 

second measurement was of the widest point in SPB separation, indicating how far 

chromosome separation had progressed. The third measurement was of the cell length 

itself at the longest point, which is just before CAR constriction and the septation into 

two daughter cells.  

 

2.3 Biochemical Assays  

 To produce GST (glutathione S-transferase) or GST-Rad24 fusion protein for in 

vitro binding assays, CaCL competent E. coli BL21-RiL cells (Agilent Technologies, 

#230245) were thawed on ice and heat-shocked for 45 seconds at 42°C for 

transformation with 100ng of either PGEX 4T (GST-containing plasmid; GE Life 

Sciences, #28954549) or PGEX 4T-Rad24 (GST-Rad24-containing plasmid). Bacterial 

cells were incubated with 900µl LB media for 37°C for 1 hour to recover, then pelleted, 

resuspended in LB, and plated on LBAC (LB plus 100 µg/mL ampicillin and 30 µg/mL 

chloramphenicol) selective media for growth at 37°C overnight. 5 mL starter cultures 

inoculated with colonies from the transformation plate were grown overnight in LBAC at 

37°C. Starter cultures were added to 200mL LBAC and grown for 2 hours at 37°C to 

optical density600 of 0.6. Recombinant protein expression was induced by adding 0.4mM 

IPTG (Isopropyl-ß-D-thiogalactopyranoside, US Biological, #I8500) to each bacterial 

culture and incubating for 4 hours at 37°C.  

 To isolate GST fusion proteins, cultures were pelleted and lysed by sonication. 

Lysates were centrifuged at 4°C, then resuspended and incubated with GST•Bind resin 
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(Millipore Sigma, #70541; 400 µl/protein) in TB1 buffer (50mM Tris-HCl, 120mM NaCl, 

1mM EDTA, 1mM DTT, 0.1% Triton-X) for 1 hour at 4°C. The protein-resin complex was 

washed in TB1 buffer and proteins were eluted by adding 10mM glutathione into 400µl  

of TB1 buffer to compete off glutathione S-transferase and recombinant proteins from 

resin beads. Resin was centrifuged and the supernatants containing purified proteins 

were evaluated by SDS-PAGE (sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis) for protein quality and concentration.  

 For yeast cell lysates, cold-sensitive S. pombe mutant nda3-km311 cells 

expressing Mid1-GFP and mid14RXXSA -GFP were grown in 400 mL YE media overnight 

at the permissive temperature 32°C. Cultures were shifted to the restrictive temperature 

of 18°C and blocked in mitosis for 6.5-7 hours. Yeast pellets were collected and washed 

with NP40 buffer (6mM Na2HPO4, 4mM Na2HPO4H2O, 1% Non-idet P-40, 150 mM 

NaCl, 2mM EDTA, 50 mM NaF, 0.1 mM Na3Va4) containing protease inhibitors (1X G 

Biosciences Protease Arrest, 1mM PMSF, 2mM Benzamadine, and 0.5mM DiFP). 

Pellets were lysed dry with glass beads (Sigma, #G8772) and lysed pellets were 

resuspended in NP40 buffer before clearing lysate by centrifugation. Total protein 

concentrations were normalized using BCA Protein Assay Kit (Thermo Scientific, 

#23227).  

 To immunoprecipitate Mid1-GFP and Mid14RXXSA -GFP for in vitro binding assays, 

Dynabeads Protein G (Invitrogen, #10007D; 75 µl /IP) were labeled with anti-GFP 

monoclonal antibody (Sigma-Aldrich, #11814460001; 4.5 µg/IP) in phosphate citrate 

buffer (0.1M Na2PO4, 0.05M Na3C6H5O7•2H2O) overnight at 4°C. Equal amounts of the 

normalized lysates from mitotically synchronized, hyperphosphorylated cold-sensitive 
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mutant nda3-km311 S. pombe were incubated for 1 hour at 4°C with the previously 

labeled anti-GFP Protein G Dynabeads (80 µl/lysate).  

 To detect Mid1-GFP/Mid14RXXSA -GFP binding to GST-Rad24/GST, the 

Dynabead complex was then washed in NP40 buffer at 4°C then incubated with either 

bacterially expressed purified GST or GST-Rad24 fusion protein (2µg/190µl Dynabead 

complex) in TB1 buffer for 1 hour at 4°C. The entire Dynabead complex (anti-GFP 

Dynabeads/Mid1-GFP/Mid14RXXSA -GFP/Rad24/GST-Rad24) was washed with TB1 

buffer by placing on Dyna-Mag2 magnet (Thermo-Fisher Scientific, #12321D) to remove 

supernatant and resuspended in 5X SDS sample buffer (250mM Tris-HCl, 10% SDS, 

30% glycerol, 10mM DTT, 0.05% Bromophenol Blue). Samples were boiled for 7 

minutes to denature proteins and placed on the Dyna-Mag2 magnet to separate them 

from Dynabeads prior to SDS-PAGE. 

 Samples were loaded onto a precast 10% polyacrylamide gel (Mini-Protean TGX; 

BioRad, #4651033) for SDS-PAGE using Mini-Protean Tetra system (BioRad, 

#1658004) with 1X Tris Glycine Running Buffer (25mM Tris, 192mM glycine, 0.1% SDS) 

at electrophoresed at 150V for 1.5 hours. Proteins were transferred to PVDF membrane 

(Immobilon-FL; Millipore Sigma, #IPFL00010) using XCell II blot module (Thermo Fisher 

Scientific, #EI9051) for XCell SureLock Mini-Cell Electrophoresis system (Thermo 

Fisher Scientific, #EI0001) in 1X NuPage transfer buffer (Thermo Fisher Scientific, 20X, 

#NP0006) for 1 hour 20 minutes at 30V.   

 For Western Blots, membranes were blocked for one hour in 1:1 PBS:Odyssey 

Blocking Buffer (Licor, #927-40000) at room temperature before incubating with 

monoclonal anti-GST antibody (Thermo Fisher Scientific, #MA4-004) and anti-GFP 
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(Sigma-Aldrich, #11814460001) antibodies at 1:1000 dilution in 1:1 PBS:Odyssey 

Blocking Buffer overnight at 4°C. Membranes were washed with PBST (PBS, 0.1% 

Tween-20) and incubated with IRDye secondary antibodies (IR800CW goat anti-mouse; 

Licor, #925-32210 or IR680RD goat anti-rabbit; Licor, #925-68071) for 1 hour at room 

temperature. Membranes were washed with PBST/PBS and visualized with the Licor 

Odyssey Fc Imaging System.  

 Mid1-GFP was also immunoprecipitated from a SIN kinase hyperactive strain, 

cdc16-116, and a SIN kinase inactive strain, sid2-250. Immunoprecipitation, binding 

assays, SDS-PAGE, and western blots were carried out as detailed above with nda3-

km311 cell lysates, with the exception that cdc16-116 and sid2-250 cultures were grown 

at 25°C overnight before shifting to the restrictive temperature of 36°C for 4 hours to 

induce SIN phenotypes before pellet collection and lysis. 

 
2.4 Computational Tools  

 Since the crystal structures for Rad24 and the N-terminal portion of Mid1 have 

yet to be determined, comparative modeling can be used to generate models based on 

homologous structures. In the absence of homologous structures, protein fold 

recognition can be used. If such models are built successfully, they can help formulate 

hypotheses about potential interaction sites or reveal features in Mid1’s structure that 

are conducive to its aggregation and/or localization.  

Sequence analysis (MSA and MEME): To search for homologs to the N-terminal portion 

of Mid1 (aa1-582), PSI-BLAST (Altschul, et al., 1997) with 25 iterations was performed 

with S. pombe Mid1 sequence as the query sequence (NP_588075.1). Algorithm 

parameters for this search were as follows - word size: 3; expect threshold: 10; matrix 
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used: BLOSUM62 with conditional compositional score matrix adjustment; Non-

redundant protein sequences database was searched with no exclusions. An MSA of 

resultant sequences obtained through the PSI-BLAST was created using EMBL Clustal 

Omega Alignment (Sievers, et al., 2011). A MEME motif analysis was performed on the 

same set of sequences using MEMESuite (Bailey, et al., 2009), set for zero or one 

occurrence of a contributing motif site per sequence and searching for 6 motifs with 

widths between 6 and 50 amino acids (default settings).  

Structural Modeling: A high-quality structure of a Rad24 homolog, Cryptosporidium 

parvum 14-3-3 protein homodimer (PDB ID #2NPM), was found by submitting Rad24 

protein sequence (NP_594167.1) to the Phyre2 protein fold recognition server (Kelley, 

et al., 2015). This structure has 63% sequence identity with Rad24, therefore a structure 

was obtained by comparative modeling also using Phyre2 (Kelley, et al., 2015).  

 For Mid1, there are no suitable templates on which to base a comparative model, 

so Mid1’s N-terminal sequence (aa 1-582) was submitted to I-TASSER (Yang, 2009; 

Roy, et al., 2012; Yang and Zhang, 2015) for threading. Threading aligns each amino 

acid in a target protein’s sequence to a template protein’s structure - template proteins 

are determined using fold recognition, rather than known structures of a homologous 

protein. Predicted models were aligned using the STAMP structural alignment (Russell 

and Barton, 1992) available in the MultiSeq plugin within the Visual Molecular Dynamics 

(Humphrey, et al., 1996) software package.  
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2.5 Statistical Analysis 

 Kolmogorov-Smirnoff (K-S) tests were done to generate average intensity 

profiles of WT strains in relation to average intensity profiles of rad24∆	strains, using 

SAS (https://www.sas.com/en_us/software/stat.html) software. The K-S test is a 

nonparametric measure of empirical distribution between two samples. The K-S 

test was chosen because it can be used under a continuity assumption for the 

univariate population/model distribution, giving valid probabilities for any underlying 

distribution of the original (WT) and comparison (rad24∆) dataset.   

 The two-sample K-S test is one of the most useful and general nonparametric 

methods for comparing two samples, as it is sensitive to differences in both location and 

shape of the empirical cumulative distribution functions. It shows one-dimensional 

probability distributions between two samples. 

 In order to statistically compute distribution probabilities using confocal data, 

intensity profiles were drawn across the length of each cell using the ND analysis tool in 

NIS-Elements (Figure 11), which takes a fluorescence reading every 0.211 micrometers 

(µm) across the length of a cell. After adjusting for individual background levels in each 

movie, raw fluorescent reading data for each profile was exported into individual Excel 

spreadsheets for each yeast strain. Since individual cells varied in their maximum 

lengths, intensity profile measurements were converted from µm into percentage of cell 

length. This allowed for data across all strains to be compared equally. There were 15-

20 cells per strain analyzed, as indicated in the figure legend, and average intensities 

were created for all cells in each strain, for each time point. In essence, handling the 
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intensity profile data this way creates a "graph" of average (for all cells in a strain) 

intensities (y axis) over % cell distance (x axis) for each time point. 

                       

                 

Figure 11. Schematic of Fluorescence Intensity Distribution Profiles and Data Processing. 
(A)Example of a fluorescently-tagged Mid1-GFP Sid4-RFP wild-type S. pombe cell and its corresponding 
intensity profile. (B) Fluorescence intensity profiles drawn across cells shows intensity values across the 
length of the profile. Raw fluorescence values were normalized for cell length and averaged for all cells in 
each strain before statistical analysis.  
  

 Therefore, each of six strains had 180 time points to analyze –	one for each Z-

stack collected during movie acquisition, and this would theoretically result in 180 
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graphs for each of the 6 strains. The K-S test was selected in this regard to carry out the 

remaining statistical work, in order to quantitatively compare rad24∆	distributions to WT 

distributions, from the amount of data collected from the intensity averages. The K-S 

test statistic in this instance is numerically representative of the differences in signal 

distribution over intensity profiles for cells in WT strains in comparison to cells from 

rad24∆	strains. The ratio of the K-S value for WT vs. rad24∆ is graphed (y-axis) vs. time 

(x-axis) in Figures 15-17 –	a ratio of 1 means no difference in distribution; values above 

and below 1 would indicate a difference.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

51	

3 Characterization of the Interaction between Mid1 and Rad24 

3.1 Determination of Phospho-dependence of Mid1 and Mid14RXXSA/Rad24 Interaction 
 
 To test the importance of Sid2 phosphorylation on Mid1 and Rad24’s interaction, 

hyperphosphorylated Mid1-GFP and hypophosphorylated Mid14RXXSA-GFP were 

isolated to assay for Rad24 binding.  Mid1-GFP and Mid14RXXSA-GFP were expressed in 

cell lines that had been previously crossed into cold-sensitive nda3-km311 mutant 

background. The NDA3 gene encodes	β-tubulin, and a mutation in this gene results in 

the inability to form microtubules, a blockage of spindle formation, and a lapse in the 

movement of chromosomes (Hiraoka, et al., 1984). The nda3-km311 mutation 

specifically arrests yeast cells synchronously in prometaphase when shifted from the 

permissive temperature of 32°C to the restrictive temperature of 18°C, following the loss 

of β-tubulin function.  

 During early mitosis (prometaphase), the point at which Mid1 is exported from 

the nucleus, Mid1 would be in its most phosphorylated form. nda3-km311 mutant cells 

were used to capture Mid1-GFP in this most hyperphosphorylated state, and to evaluate 

whether Mid14RXXSA-GFP would have less Rad24 binding capacity because of reduced 

Sid2 phosphorylation. Mid1-GFP and Mid14RXXSA-GFP were immunoprecipitated from 

mitotically synchronized nda3-km311 cell lysates with αGFP-labeled magnetic beads, 

incubated with either bacterially-expressed GST or GST-Rad24, separated by SDS-

PAGE, transferred to PVDF membranes, and probed with αGFP and αGST antibodies. 

 Since SIN activity also peaks during mitosis, Sid2 phosphorylation in the 

Mid14RXXSA-GFP phosphomutant cell line should be diminished during mitosis, and 

Mid1-GFP isolated from this cell line should, in theory, demonstrate a reduced GST-
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Rad24 binding ability. This reduced binding ability would be apparent on the WB as 

either a lighter or nonexistent 56 kDa sized GST-Rad24 band (Rad24’s molecular 

weight is 30kDa; GST’s is 26 kDA) in the Mid14RXXSA-GFP/GST-Rad24 

immunoprecipitation/in vitro binding assay lane.  

 However, Mid1-GFP did not bind more efficiently to Rad24 than Mid14RXXSA -

GFP; there was not a marked difference in band intensity between phosphosite mutant 

Mid14RXXSA -GFP and Mid1-GFP (Figure 12). Additionally, results obtained were 

inconsistent between two separate experiments, with two ~56 kDa GST-Rad24 bands 

showing up in the GST-Rad24-containing IP lanes on one occurrence, and four ~56 kDa 

GST-Rad24 bands showing up in all IP lanes, GST only included, on a separate 

occurrence. This would suggest that another protein that is roughly ~56 kDa in size in 

the GST only IP lanes is binding nonspecifically to the magnetic beads. Perhaps the 

conformations of either Mid1 (Mid1 is a large ~120 kDa nonsoluble protein that tends to 

break apart when purified) or Rad24 were not in their native state as they would be in 

vivo, which may be necessary for binding affinity.  

 There are, in fact, more than Sid2 phosphorylation sites on Mid1. Mid1’s protein 

sequence shows 9 serines that fit the consensus motif for Sid2 phosphorylation, and 

phosphopeptide mapping has shown that there are additional sites as well (DeWitt A, 

Gould K, and Hart D; article in process). Since all of the Sid2 phosphorylation sites are 

not removed in the Mid14RXXSA -GFP mutant, there could still be significant binding 

occurring between Rad24 and Mid1, even though 4 of the 9 of the phosphorylation sites 

were destroyed. This may account for the binding of GST-Rad24 to both Mid1-GFP and 

Mid14RXXSA -GFP in the binding assay. (Figure12).              
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Figure 12. Mid1-GFP does not bind more efficiently to GST-Rad24 than Mid14RXXSA-GFP. Two 
separate IP/in vitro BA/WB experiments are shown. Immunoprecipitated Mid1-GFP and Mid14RXXSA-GFP 
from mitotically-synchronized, prometaphase-arrested nda3-km311 mutant S.pombe strains #3173 and 
#4 were incubated with bacterially expressed GST or GST-Rad24. Proteins were separated using SDS-
PAGE and transferred to PVDF membrane prior to cutting membrane between 100 kDa and 70 kDa. 
Blots were probed with αGFP/αGST on the top and bottom of blot, respectively, along with corresponding 
secondary antibodies.  
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3.2 Determination of Phospho-dependence of Rad24/Mid1 Interaction in SIN Mutants 

 As an alternative, and specifically SIN-dependent, method to induce different 

phosphorylation states of Mid1, Mid1-GFP was isolated from two S. pombe cell lines 

that express the temperature-sensitive SIN mutations cdc16-116 and sid2-250. Sid2 is 

activated and inactivated, respectively, in each of these strains, and their use explicitly 

couples the SIN pathway to Mid1 phosphorylation. In cdc16-116 cells, the SIN is 

constitutively activated due to inactivation of Cdc16. The cdc16 gene encodes one of 

the two components of the GTPase-activating protein (GAP) for GTPase Spg1, and 

inactivating GAP activity is necessary for SIN activation (Furge, et al., 1998). The 

cdc16-116 phenotype is small, multiseptated cells that display cytokinetic failure at a 

restrictive temperature (Fankhauser, et al., 1993; see Figure 5 of this thesis). The sid2-

250 mutation inactivates Sid2’s kinase ability and results in elongated, multinucleate 

cells with missing or misshapen septa (Balasubramanian, et al., 1998; see Figure 5 of 

this thesis). To assay for Rad24 binding, Mid1-GFP was immuno-precipitated from 

cdc16-116 and sid2-250 lysates, incubated with bacterially-expressed GST or GST-

Rad24, separated by SDS-PAGE, transferred to PVDF membranes, and probed with 

αGFP and αGST antibodies. 

 Mid1-GFP was isolated from SIN mutant strains to evaluate whether forcing Mid1 

phosphorylation in a SIN-dependent manner has an effect on Rad24’s binding ability 

with Mid1. SIN mutant cdc16-116 cells arrest in cytokinesis because their mitotic, 

nuclear division has become uncoupled from their cytokinetic, physical separation.  

sid2-250 cells also show marked cytokinetic failure because they cannot form a new cell 

wall and thus can never complete physical separation, even though they contain 
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multiple septa. It is a possibility that perhaps since SIN mutant cells arrest in 

cytokinesis, we could miss the Mid1 and Rad24 interaction if it happens during early 

mitosis, and that cytokinesis is too late to show binding. But the SIN mutants in this 

case are being used to induce specific phosphorylation states on Mid1, so cell cycle 

stage at the time of pellet collection should not be a factor for Rad24 binding once Mid1 

is purified from lysates, and since the binding assay is performed in vitro, not in vivo.   

 If Mid1 were reliant on Sid2 phosphorylation for Rad24 binding, we would expect 

reduced or nonexistent Mid1-GFP/GST-Rad24 binding with immunoprecipitation of 

hypophosphorylated Mid1-GFP from sid2-250 lysate. Likewise, we would expect a 

concurrent increase in Mid1-GFP/GST-Rad24 binding with immunoprecipitation of 

hyperphosphorylated Mid1-GFP from the SIN hyperactive strain, cdc16-116.  

 However, hyperphosphorylation did not result in more Rad24 binding to Mid1 

(Figure 13). In fact, Mid1-GFP and GST-Rad24 show no evidence of binding in either 

cdc16-116 or sid2-250 lysates. SIN elongated and mulitiseptated phenotypes were 

confirmed by examination under light microscopy before collecting cell pellets, so Mid1 

hypo and hyperphosphorylation should be insured. The rather dark ~50 kDa band in the 

immuno-precipitation/in vitro binding assay lanes is the α-mouse secondary antibody 

picking up the Immunoglobulin G (IgG) heavy chain from the immunoprecipitation using 

and mouse α-GFP antibody.  
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Figure 13. Hyperphosphorylation did not result in Rad24 binding to Mid1 more readily. Two 
separate IP/in vitro BA/WB experiments are shown. Immunoprecipitated Mid1-GFP from asynchronous 
SIN hyperactive and SIN inactive mutant S.pombe cells were incubated with bacterially expressed GST 
or GST-Rad24. Proteins were separated using SDS-PAGE and transferred to PVDF membrane prior to 
cutting membrane between 100 kDa and 70 kDa. Blots were probed with αGFP/αGST on the top and 
bottom of blot, respectively, along with corresponding secondary antibodies for detection.  
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 There may be technical reasons to consider in addressing these results. The 

Mid1-GFP/GST-Rad24 binding assay itself does not have a positive control, so issues 

such as buffer conditions and incubation times may or may not be optimal. It may also 

be possible that there are various post-translational modifications that necessitate 

Rad24 binding. It could be that Rad24 itself, since it is also a phosphoprotein, requires 

post-translational modifications such as phosphorylation, or quaternary structure shifts 

such as dimerization, that would not happen in its bacterially-expressed, purified form. 

Also, Mid1 or Rad24 may not be in the correct protein conformation to facilitate binding 

to one another or their interaction may require another binding partner not present in 

this particular assay. And lastly, even though Rad24 may bind Mid1 at some point 

during the cell cycle, phosphorylation of RXXS sites may be accomplished by another 

NDR2 kinase. 

 It may be that Mid1, even though in a constitutively active phosphorylation state, 

does not bind Rad24 permanently. With purified proteins, the post-translational 

modifications or additional binding partners that may be necessary to drive this 

interaction in vivo are not present. Nevertheless, the fact that Mid1-GFP/GST-Rad24 

binding was not detected in SIN mutant lysates may be reflective of the transience of 

the interaction. And although this shows an in vitro test, perhaps Rad24 only binds Mid1 

for a short time. The interaction could be dependent on Mid1’s conformation or 

oligomerization state after it is exported from the nucleus, or when Mid1 is separated 

from the CAR and heading back to the nucleus. Rad24 and Mid1 are known to interact 

through tandem-affinity purification (TAP), with a significantly high recovery of Mid1 with 

Rad24 (Hart D and Gould K, unpublished data). There was 73.6% peptide coverage of 
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Mid1 with 55.8% coverage of Rad24, which are considered high for a large, 

hydrophobic protein like Mid1 that is difficult to purify. The mixed results obtained from 

our lysate binding assays could be more of a reflection of the relative difficulty of 

isolating and working with Mid1, and its transient interaction time with Rad24, rather 

than there not being an interaction at all. TAP is also a method in which the proteins are 

purified as a complex from live cells and any post-translational modifications or binding 

partners will still be intact, so all of these factors may play a role in failure to detect 

binding in vitro. 

 
3.3 Sequence analysis and structural models of Rad24 and Mid1 N-terminus  
 
 To identify distant homologs of Mid1’s N-terminus, PSI- BLAST (Altschul, et al., 

1997) was performed.  Resultant sequences, shown in Table 3, were submitted along 

with the sequence from S. pombe (UniProt ID# P78953) Mid1 for a multiple sequence 

alignment (Figure S2) and conserved motif search using MEMESuite (Bailey, et al., 

2009). 

Table 3   PSI-BLAST result sequences with Mid1 N-terminus (aa 1-582) as query  

Species 	 UniProt ID	 E Value	 Identity	 Sequence Coverage	

S. cryophilus	 S9VX61	 0.0	 42%	 99%	

S. octosporus	 S9QX95	 0.0	 40%	 99%	

S. japonicus	 B6JZV3	 9e-175	 31%	 94%	

C. nigoni	 A0A2G5THJ6	 0.027	 17%	 80%	
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 MSA shows conserved serine residues at Sid2 phosphosites RIKS432, RTYS464, 

and RAHS531, which indicates evolutionary importance of these sites, at least among 

yeasts (Figure S2). The site where Plo1 phosphorylates S. pombe Mid1 and binds Rng2 

(aa 59-96) to modulate cytokinetic node assembly is highly conserved among yeasts as 

well. There are several serines in the MSA (S46, S62, S67, S174, S335, and S492) that are 

highly conserved but located outside of the MEME motifs. MEME results indicate 

several conserved motifs present in the N-terminal segment of Mid1. Of particular 

interest was a motif (number 3, aa 401- 450) that contains aforementioned S432 of Sid2 

phosphosite RIKS in S. pombe Mid1 (Figure 14, shown in purple). This is one of the 

main sites located in phosphopeptide studies (DeWitt A, Gould K, and Hart D; article in 

process), and could be an indicator of evolutionary importance. The site where Plo1 

phosphorylates S. pombe Mid1 and binds Rng2 is also located within a conserved motif 

(number 1, aa 59-96, shown in teal in Figure 14).  

 The most conserved part of motif number 3, RGRI[KR]SSS[ST] (Figure 14), 

containing S432 is predominantly polar but there are hydrophobic residues flanking it, 

which  would fit the description of an amphipathic binding cleft consistent with Rad24 

binding (Muslin, et al., 1996).   

 Other motifs found among yeasts contain several conserved residues including 

glutamic acid, proline, tyrosine, threonine, leucine, aspartic acid,  and phenylalanine 

(aa274-294, aa605-652, aa763-812; Figure S3). These motifs could be important for 

regulatory processes that occur outside of the scope of this thesis or have yet to be 

elucidated.  
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Figure 14. Motif analysis shows consensus between four yeast Mid1 protein sequences. (A) Six 
conserved motifs found across S. cryophilus (UniProt ID# S9VX61), S. octosporus (UniProt ID# S9QX95), 
S. japonicus (UniProt ID# B6JZV3), and S. pombe (UniProt ID# P78953) Mid1 sequences. (B) Close up 
logo of motif 1 shown in A (teal) where Plo1 phosphorylates and Mid1 binds Rng2 (aa 59-96). (C) Close 
up of motif 3 shown in A (purple). The grey box indicates conserved consensus RXXS site where Sid2 
phosphoshorylates Mid1 at S432. This region is also where Clp1 and Cdr2 interact with Mid1.  
 
  
 The Rad24 model based on the 14-3-3 protein (PFAM ID #PF00244; Figure 15) 

has 9 antiparallel alpha helices that could form a concave amphipathic groove to 
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interact with target peptides when dimerized.  The core of 14-3-3 proteins, where the 

dimerization interface and the functional regulatory domain are located, are more 

conserved than the N and C termini (Isobe, et al., 1991). The quality of the S. pombe 

Rad24 model was quite high, with a 100% confidence score and a 63% sequence 

identity with the structure of the C. parvum 14-3-3 homodimer (PDB ID# 2NPM) at 2.52 

Å resolution.  The structure obtained fits the description of a regulatory molecule with 

the ability to bind a variety of functionally diverse ligands (Fu, et al., 2000).      

                                

Figure 15. Phyre2 comparative model of S. pombe Rad24. Like other 14-3-3 proteins, helices 3 and 5 
contain charged and polar residues while helices 7 and 9 contain hydrophobic residues. This amphipathic 
groove constitutes the dimerization interface as well as mediating interactions with phosphoamino acids 
in binding partners (Fu, et al., 2000). There is 100% confidence and 63% sequence identity based on the 
structure of C. parvum 14-3-3 homodimer in complex with a peptide (PDB ID # 2NPM).  
 

 The Phyre 2 query of Mid1 N-terminus revealed that there are no close, high 

sequence similarity homologs available. Since there was not a homologous crystal 

structure to base a model on for Mid1’s N-terminus (aa 1-582), the sequence was 

submitted to I-TASSER for fold recognition via PSI-BLAST and threading to identify 
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distant relatives. The top five model structures of Mid1’s N-Terminus are represented in 

Table 4, with their corresponding C-scores. The C-score is a quality measure of each 

model that is calculated based on significance of alignment to the template used. C-

scores range from -5 to 2, with higher scores being associated with high confidence in 

the model’s predicted structure (Roy, et al., 2012). The models of Mid1 were 

constructed from multiple different partial templates that were identified using fold 

recognition, rather than from a single known structure of a homologous protein. Thus 

the predicted models are built based on similar protein domains from various structures, 

and not on a single structure. 

 Due to their low C-scores, the Mid1 N-terminal structures obtained through I-

TASSER were not considered reliable enough to be used for protein-protein docking to 

Rad24. Nevertheless, these predicted models can offer potential insight into the Sid2 

phosphosite residues involved, and the biochemical properties of the surrounding 

residues can be evaluated. Though highly speculative, these models can be used to 

evaluate Sid2 phosphorylation sites on Mid1, their exposure to solvent, and availability 

to interact with binding partners.  

 The five models were aligned using the STAMP structural alignment (Russell and 

Barton, 1992) in VMD (Humphrey, et al., 1996). All predicted models are very similar as 

shown in the Figure 16 alignment. There was an agreement in structure of Sid2 

phosphosites, and these regions, with the exception of S329, constitute more compactly  

folded segments joined together by more flexible (possibly disordered) regions of the 

structure. The serines at Sid2 phosphosites RISS329, RIKS432, RTYS464, and RAHS531 

are located in areas of moderate solvent accessibility according to the I-TASSER 
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Table 4   I-Tasser modeling results of Mid1 amino acids 1-582 

Model 1	

	

C-score: -2.63 
Template(s) PDB accession number: 
2NBI 
3CHN 
2PFF 
4V58 
3HMJ 
1XI4 
5I8I 
4O9X 
5L5G 
3K1Q	

Model 2 

	

C-score: -2.64 
Template(s) PDB accession number: 
2NBI 
3CHN 
2PFF 
4V58 
3HMJ 
1XI4 
5I8I 
4O9X 
5L5G 
3K1Q	

Model 3	

	

C-score: -2.81 
Template(s) PDB accession number: 
2NBI 
3CHN 
2PFF 
4V58 
3HMJ 
1XI4 
5I8I 
4O9X 
5L5G 
3K1Q	
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Model 4	

	

C-score: -3.24 
Template(s) PDB accession number: 
2NBI 
3CHN 
2PFF 
4V58 
3HMJ 
1XI4 
5I8I 
4O9X 
5L5G 
3K1Q	

Model 5	

	

C-score: -3.15 
Template(s) PDB accession number: 
2NBI 
3CHN 
2PFF 
4V58 
3HMJ 
1XI4 
5I8I 
4O9X 
5L5G 
3K1Q	

 
 

predicted solvent accessibility report (data not shown) with an average of 3.25 on a 

scale of 0-9.  The predicted structures of the phosphosites are helical in two of the four 

sites mentioned.  

 It is plausible that Mid1’s N-terminus, due to its role as a scaffolding protein, is 

highly flexible, perhaps intrinsically disordered. The N-terminus is known to play a role 

in node assembly and modulating cortical stability at the plasma membrane (see Figure 

8C). The threading models obtained may reflect this inherent flexibility in that the 

conserved “joint”	regions are connected via extensive linker loops (Figure 16). 
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Figure 16. STAMP structural alignment of putative Mid1 N-terminus (aa 1-582) models rendered in 
VMD shows consensus around Sid2 phosphosites. The aqua colored VDW (Van Der Waals) residues 
represent the four Sid2 binding sites mutated in the Mid1-4RXXSA mutant.  
 
 
 In the context of the Mid1 N-terminus structural models (Table 4 and Figure 16), 

the MSA results suggest that the conserved regions containing Sid2 phosphosites with 

conserved serines are in the more ordered, folded regions of the protein, while the 

highly disordered and flexible regions do not contain conserved residues. Phosphosite 

RISS329 does not contain a conserved serine - this is the most N-terminal phosphosite 

and lies within a region where the predicted models vary the most (Figure 16 and Figure 

S2). Extensive dynamics simulations that are beyond the scope of this thesis would be 

necessary to generate the conformational ensemble of this complex structure. 
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4 Consequences of Rad24 deletion on timing and morphology of CAR formation  
 
4.1 Difference in F-actin distribution between wild type and rad24∆	S. pombe  

 Restructuring the actin cytoskeleton for cell division requires relocalization of 

actin from the cell ends during cell growth in interphase to the cell cortex at mitosis to 

form the CAR. In fission yeast, the Morphogenesis Orb6 Network (MOR) pathway is 

essential for bipolar growth by promoting actin polarization at cell tips during interphase 

(Verde, et al., 1998) and has also been implicated in F-actin patch assembly (Huang, et 

al., 2005). The MOR pathway is another conserved NDR-pathway in fission yeast, and 

like the SIN, is regulated through a GTPase, Cdc42 (Das, et al., 2009).  The G2/M 

interphase-to-mitosis transition is coordinated by interplay between the SIN and MOR 

pathways (Ray, et al., 2010; Gupta and McCollum, 2011) and Sid2-related kinase Orb6 

binds to Mob1-related protein Mob2 (Hou, et al., 2003). The SIN disrupts the interphase 

actin cytoskeleton by directly impeding MOR activity through Nak1 kinase-mediated 

Orb6 inhibition (Gupta and McCollum, 2011). Therefore, we hypothesized that F-actin 

temporal and spatial localization is altered when SIN targets are misregulated.  

 Three-dimensional structures such as the CAR and the actin relocalization 

needed to form it are more easily visualized using the confocal microscope. The 

migration and timing of proteins involved in CAR assembly are more easily visualized as 

well, and the aim of the methods employed here are to gain insight into the whole 

picture of the CAR, as it assembles and constricts during mitosis. More specifically, 

confocal microscopy enables visualization of the effects that deleting rad24 has on CAR 

formation. These effects could be due, in part, on SIN activity regulating Rad24, or may 

be tied into the MOR pathway in a SIN-dependent manner.   
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 Live cell videomicroscopy was used to monitor the intensity of F-actin across the 

length of each cell, followed by a multi-step statistical approach to generate K-S values 

(complete details provided in Sections 2.2 and 2.5 of this thesis). The ratio of K-S value 

in WT vs. rad24∆ cells was plotted to show differences in F-actin distribution. A ratio of 

1 would mean there is no difference in protein distributions, and any value above or 

below 1 would indicate that there is a difference.  The K-S ratio plots also show 

cytokinetic events, such as sharp rings or CAR constriction, as they occur in each 

strain. To do this, individual cells were observed and the movie frame was recorded and 

averaged for each cytokinetic event, with the frame number at which the SPBs 

separated marked as time 0 to follow the timing of mitotic events in individual cells. All 

cells in which fluorescent intensity profiles were analyzed for the statistical data were 

timed for cytokinetic events in this way, and WT values were compared to rad24∆ in an 

unpaired student t-test (https://www.graphpad.com/quickcalcs/ttest1.cfm) for statistical 

significance. Differences in mean cytokinetic event times considered to be statistically 

significant (p value ≤ 0.01) are marked on the plot with a red asterisk.  

 In rad24∆	cells, F-actin recruitment to the CAR is not significantly early (WT 

mean 7.07 min, SD 4.74 vs. rad24∆ mean 8.40 min, SD 5.28; p= 0.4727), even though 

CAR constriction is significantly early in comparison to WT cells (WT mean 64.75 min, 

SD 26.04 vs. rad24∆ mean 37.53 min, SD 11.59; p < 0.0001) (Figures 16B and C, 64 

min vs. 35 min) and the cells separate sooner (WT mean 89.14 min, SD 25.29 vs. 

rad24∆ mean 66.80 min, SD 14.25; p = 0.0147) (Figure 17A). CAR constriction also 

ends earlier in rad24∆ cells (WT mean 76.57 min, SD 20.74 vs. rad24∆ mean 54.07 

min, SD 12.67; p = 0.0049). Interestingly, the SPBs are at their widest separation much 
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earlier in rad24∆ cells (WT mean 34.47 min, SD 5.55 vs. rad24∆ mean 19.93 min, SD 

5.51; p < 0.0001) even though the difference in timing that the rings were sharp in both 

cell lines was not significant (WT mean 23.2 min, SD 9.26 vs. rad24∆ mean 24.67 min, 

SD 8.62; p= 0.6568). This would indicate a potential disconnect between mitotic division 

and cytokinesis that could be brought on by a delay in F-actin cables assembling for 

timely CAR constriction. The delay in CAR constriction could be brought on by the 

failure of Rad24 to sequester Cdr2 in the cytoplasm during mitosis and therefore 

indirectly resulting in the timing/misplacement of Mid1. This would incorrectly situate 

Mid1 during late interphase, when actin is supposed to be recruited to the CAR. Or 

perhaps SIN signaling controls the MOR pathway in a Cdr2 or 14-3-3 –	dependent 

manner. Orb6 is also an NDR kinase and could potentially be involved with Rad24 

somehow since it also phosphorylates RXXS motifs. 

 The difference in LifeAct-GFP distribution between WT and rad24∆	cells is most 

evident from 40 to 65 minutes into cell division, during the overlap when the CAR is 

constricting (Figure 17A) in both WT and rad24∆ cells. If Rad24 were required to 

modulate Mid1’s presence in the cytoplasm during interphase, we would expect to see 

delays in recruitment of F-actin or problems with actin filamentation or bundling due to 

lack of actin regulator Cdc15 recruitment, which needs Mid1 for proper placement 

(Laporte, et al., 2011). Cdc15 is also reliant on Clp1, whose placement in the cytoplasm 

during interphase requires Rad24 (Mishra, et al., 2005; Clifford, et al., 2008). F-actin is 

also more localized to the cell tips at the end of CAR constriction in WT cells (Figure 

17A and B, starting at ~80 minutes). In sum, there are detectable differences in F-actin 

distribution during key cytokinetic events and early CAR constriction in rad24∆ cells.  
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Figure 17. rad24∆ cells show a delay in F-actin recruitment to the CAR but premature CAR 
constriction and septation. (A) K-S test graph of distribution ratio of LifeAct-GFP in WT vs. rad24∆	S. 
pombe strains. Number of cells analyzed: n=15 for both strains LifeAct-GFP sid4-RFP, strain  #216 and 
LifeAct-GFP sid4-RFP rad24∆, strain #355 (B) Localization of LifeAct-GFP in an example WT cell from 
strain #216 throughout mitosis, the beginning of which in marked at timepoint 0, when SPBs separate. (C) 
Localization of LifeAct-GFP in an example rad24∆ cell from strain #355 throughout mitosis.  
Scale bar = 5 µm.  
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4.2 Difference in Myosin-II and Mid1 distributions in WT and rad24∆	S. pombe  

 Myosin-II is a motor protein and, like other CAR constriction machinery 

components, is recruited to the CAR via Mid1 at the onset of mitosis (Wu, et al., 2003). 

Myosin-II in fission yeast is composed of three subunits - heavy chain Myo2, and light 

chains Cdc4 and Rlc1. During cytokinesis, myosin-II cables are thought to condense 

oppositely situated F-actin filaments into closer proximity and cause CAR constriction 

(Kamasaki, et al., 2007), often times called the “purse-string model.”	Myosin-II subunits 

and IQGAP Rng2 are recruited to the CAR at roughly the same time, ~6-9 minutes 

before SPB separation, and earlier than Cdc15 and formin Cdc12, which contribute to 

F-actin polymerization at ~2 minutes into mitosis (Wu, et al., 2003).  

 Even though Mid1 is present at the medial cortex throughout G2 (Paoletti and 

Chang, 2000), assembly of all the necessary contractile components and maturation of 

medial cortical nodes is initiated by mitotic entry and fuels mitotic commitment (Tanaka, 

et al., 2001). Plo1, in addition to its regulation of Mid1 nuclear export at mitotic onset, 

phosphorylates Mid1 and provides a binding site for IQGAP Rng2 (Eng, et al., 1998) to 

influence the timing of myosin-II recruitment (Almonacid et al., 2011; Takaine, et al., 

2012). Maturation of nodes at mitotic onset is marked by the loss and gain of numerous 

components, and myosin-II motor activity has been shown to be involved in cortical 

actin turnover during cytokinesis, which indicates it may play a role in F-actin 

disassembly (Guha, et al., 2005). In mid1∆	cells, the C-terminal portion of Myo2 

(Myo2Ct-YFP; aa 1394-1596) failed to accumulate at the medial cortex during G2 or at 

maturing nodes during mitosis (Motegi, et al., 2004), indicating that Myo2’s N-terminus 

is required to bind Mid1. Even though Mid1 was shown to be essential for myosin-II’s 
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initial accumulation, an abnormal CAR was slowly formed by Myo2 in mid1∆	cells which 

disintegrated during F-actin disassembly, while the CAR in WT cells did not (Motegi, et 

al., 2004). A similar result was seen in SIN inactive mutants that form an ectopic CAR 

early in mitosis that dissipate in anaphase, suggesting that SIN signaling is required for 

CAR maintenance in late mitosis (Balasubramanian, et al., 1998). We hypothesized that 

Rad24 could play a role in both of these processes and assayed fluorescent Rlc1 using 

the same live cell videomicroscopy, statistical analysis, timed cytokinetic events, and K-

S ratio plots as F-actin in WT and rad24∆	cells to check for spatial and temporal 

differences in myosin-II localization. 

 Unlike F-actin, Myosin Rlc1 exhibits significantly delayed recruitment to the CAR 

in rad24∆	cells (WT mean -10.33 min, SD 6.01 vs. rad24∆ mean -3.13 min, SD 1.55; p= 

0.0039) (Figure 18B and C), which also resulted in a delay of the onset of CAR 

constriction (WT mean 15.8 min, SD 6.52 vs. rad24∆ mean 27.73 min, SD 7.91; p < 

0.0001) (Figure 18B and C) as well as delayed completion of CAR constriction (WT 

mean 44.57 min, SD 3.98 vs. rad24∆ mean 74.4 min, SD 6.22; p < 0.0001). A lag in 

CAR dissolution was also evident in rad24∆	cells (WT mean 48 min, SD 3.78 vs. rad24∆ 

mean 80.80 min, SD 6.18; p < 0.0001) (Figure 18B and C). The delay in CAR 

dissolution is visibly evident in the K-S distribution ratio curve for Rlc1, as the 

differences increase throughout cell division and are drawn out over a period of ~2 

hours (Figure 18A).  

 rad24∆ cells also displayed significant differences in the timing of ring sharpness, 

an indicator of full myosin-II recruitment to the CAR (WT mean 8.4 min, SD 5.42 vs. 

rad24∆ mean 18 min, SD 6.24; p < 0.0001) (Figure 18B and C). SPB maximum 
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separation (WT mean 22.6 min, SD 7.42 vs. rad24∆ mean 39.13 min, SD 7.07; p < 

0.0001) (Figure 18B and C) and completed cytokinesis were also deferred (WT mean 

68.56 min, SD 7.83 vs. rad24∆ mean 104.83 min, SD 6.7; p < 0.0001).  

 Since myosin-II is recruited to the CAR slightly earlier than the onset of actin 

polymerization (Laporte, et al., 2011), rad24∆ cells may have delayed CAR constriction, 

due to the lapse in timely recruitment of Myosin because of misplaced Mid1 (See 

supplemental figure S1 of this thesis for an overlay of Mid1-NeonGreen and Rlc1-

tomato). This is in contrast to the accelerated CAR constriction seen in the Mid14RXXSA 

mutant and may be because although Sid2 phosphorylation is required for Mid1 to 

dissociate from the CAR prior to constriction, Rad24 is needed for the correct timing of 

Clp1 or Mid1 in the cytoplasm during mitosis. Since Clp1 is a regulator of mitotic exit, 

perhaps Rad24 is required for completion of the cytokinetic checkpoint. Additionally, if 

Rad24 is required for Mid1 to stay in the cytoplasm, a delay in Myosin recruitment to the 

CAR and CAR constriction would be consistent with Mid1 being stuck at the nodes, as 

in the Mid14RXXSA mutant. However, CAR constriction is not accelerated in rad24∆ cells 

as was noted in the Mid14RXXSA mutant, so this effect seems to be Rad24-dependent.  
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Figure 18. rad24∆ cells show delayed Myosin recruitment to the CAR and delays in CAR 
constriction (A) K-S test graph of distribution ratio of Rlc1-Tomato in WT vs. rad24∆	S. pombe strains. 
Number of cells analyzed: n=20 for Mid1-NG sid4-RFP Rlc1-tomato, strain #197 and n=25 for Mid1-NG 
sid4-RFP Rlc1-tomato rad24∆, strain #354. (B) Rlc1-Tomato in WT strain #197. (C) Rlc1-Tomato in 
rad24∆ strain #354. Scale bar = 5 µm. 
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 If, like Clp1 and Cdr2, Mid1 requires Rad24 binding in order to sequester it in the 

cytoplasm during mitosis and prolong SIN signaling until the completion of the 

cytokinetic checkpoint, we hypothesized that Mid1-NeonGreen would return to the 

nucleus earlier in rad24∆ cells. We also surmised that Rad24 may play a role in 

transitioning Mid1 though various oligomerization states –	Rad24 may bind to and 

prevent only Mid1 monomers from returning to the nucleus early or it may stabilize 

oligomers at the cell membrane. To test these hypotheses, Mid1-NeonGreen was 

expressed in the same cell line as Rlc1-tomato and assayed using the same live cell 

videomicroscopy, statistical analysis, timed cytokinetic events, and K-S ratio plots as 

stated above and in Methods section 2.2. 

 The ratio of WT Mid1-NeonGreen protein distribution vs. rad24∆ shows changes 

that are concentrated early on in cell division and continue to increase up to ring 

constriction (Figure 19A). This could be because of misplaced Cdr2 during the previous 

round of mitosis resulting in a deficient Cdr2 amount at the cell cortex to anchor Mid1 

correctly. Mid1-NeonGreen’s full recruitment to the CAR was delayed in rad24∆ cells 

(WT mean 9.27 min, SD 5.35 vs. rad24∆ mean 25.47 min, SD 7.92; p < 0.0001) (Figure 

19B and C), and Mid1-NeonGreen disperses from the CAR later (WT mean 34.53 min, 

SD 7.78 vs. rad24∆ mean 92.47 min, SD 23.95; p < 0.0001) (Figure 19B and C) 

resulting in significantly deferred completion of cytokinesis (WT mean 68.56 min, SD 

7.83 vs. rad24∆ mean 105.67 min, SD 6.8; p < 0.0001). This effect was also observed in 

the Mid14RXXSA phosphosite mutant; Mid14RXXSA-GFP was stuck at the cell cortex when it 

should have dispersed at CAR constriction (DeWitt A, Gould K, and Hart D; article in 

process) as was seen with WT Mid1-GFP.  
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 Mid1-NeonGreen also appears to be more concentrated at the cell cortex and 

nodes rather than in the nucleus ~20 minutes prior to the onset of mitosis (Figure 19B 

and C, -20 min). It also appears that Mid1-NeonGreen is more concentrated in the new 

daughter cells’	nuclei after dissociation from the CAR (Figure 19C, 40 min through 

72min). This is what we would expect to see if Rad24 is required for Mid1 to be 

sequestered in the cytoplasm during interphase –	a return of Mid1 to the nucleus early 

that is suggestive of a SIN/Rad24-dependent mechanism for control over Mid1 

localization. SPBs also show a delay in reaching their furthest separation (WT mean 

22.6 min, SD 7.42 vs. rad24∆ mean 38.4 min, SD 7.38; p < 0.0001), which is indicates a 

delayed coupling of cytokinesis to mitosis. Rad24 has been shown to colocalize with 

SIN components Sid4 and Cdc11 at the SPBs (Mishra, et al., 2005), so perhaps the 

delay in mitotic progression is due to a lack of Rad24 to prolong SIN signaling.  

 In addition to these delays, which were also observed in LifeAct-GFP and Rlc1-

tomato distributions, there is an additional peak in the Mid1-NeonGreen distribution ratio 

at 140 minutes past the onset of mitosis. This may be attributed to Mid1-NeonGreen 

localizing to the nucleus earlier in rad24∆ cells than WT and would support the 

hypothesis that Rad24 may sequester Mid1 monomers before returning to the nucleus. 

This result is similar to what was seen in the mid13A mutant (Sun, et al., 2015).  
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Figure 19. rad24∆ cells show cortical adherence of Mid1 during G2 and a premature return to the 
nucleus. (A) K-S test graph of distribution ratio of Mid1-NeonGreen in WT vs. rad24∆	S. pombe strains. 
Number of cells analyzed: n=20 for Mid1-NG sid4-RFP Rlc1-tomato, strain #197 and n=25 for Mid1-NG 
sid4-RFP Rlc1-tomato rad24∆, strain #354. (B) Mid1-NeonGreen in WT strain #197. (C) Mid1-NeonGreen 
in rad24∆ strain #354. rad24∆ cells show significant delays in full Mid1-NG recruitment (Figure B:8 min 
vs. Figure C:20 min), Mid1-NG dispersion from the CAR (B:36 min vs. C:72 min), and increased nuclear 
Mid1-NG after CAR constriction.  
Scale bar = 5 µm. 
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4.3 Difference in Mid1 distribution between wild type and rad24∆	S. pombe  

 To test Mid1 localization in rad24∆ cells independent of Rlc1 fluorescent labeling, 

and to test labeling Mid1 with a second fluorescent tag, S. pombe strains expressing 

Mid1-GFP and Sid4-RFP only were assayed for differences in protein distributions using 

the same live cell videomicroscopy, statistical analysis, timed cytokinetic events, and K-

S ratio plots as stated above with Mid1-NeonGreen. Mid1-NeonGreen gives a brighter 

signal with lower background, and is a more accurate depiction of Mid1 protein 

localization in these assays, and final conclusions were based off the Mid1-NeonGreen 

data. Nevertheless, Mid1-GFP localization (Figure 20) shows similar delays to the Mid1-

NeonGreen localization (Figure 19) when comparing WT to rad24∆ cells.  

 It appears that Mid1-GFP was fully recruited (sharp ring) to the cell cortex earlier 

in rad24∆ cells (WT mean 23.08 min, SD 9.25 vs. rad24∆ mean 15.32 min, SD 8.47; p = 

0.0022) (Figure 20B and C; ~22 min vs. ~16min). This effect was not apparent in the 

Mid1-NeonGreen data. The SPBs again showed a delay in reaching their furthest 

separation (WT mean 34.69 min, SD 10.74 vs. rad24∆ mean 26.79 min, SD 6.96; p = 

0.0021). The unpaired student t-test was not significant for timing of Mid1 leaving the 

CAR in analysis of these cells, but roughly occurred at the same time, ~62 minutes after 

mitotic onset. The peak in ratio distribution difference shown again at ~140 minutes 

could be due to Mid1-GFP returning to the nucleus earlier, as in the Mid1-NeonGreen 

data. Also, as in the Mid1-NeonGreen data, most of the difference in distribution occurs 

as the CAR is forming and constricting.  
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Figure 20. rad24∆ cells show cortical adherence of Mid1 during G2 and a premature return to the 
nucleus. (A) K-S test graph of distribution ratio of Mid1-GFP in WT vs. rad24∆	S. pombe strains. Number 
of cells analyzed: n=26 for Mid1-GFP Sid4-RFP, strain #110 and n=28 for Mid1-GFP Sid4-RFP rad24∆, 
strain #353. (B) Mid1-GFP in WT strain #110. (C) Mid1-GFP in rad24∆ strain #353. Scale bar = 5 µm. 
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5 Discussion 
  
 In animal and yeast cells, the proper CAR formation and constriction is heavily 

reliant on the temporal regulation, phosphorylation, and localization of key proteins. 

Removal of one of these key proteins, Rad24, has distinct consequences on the timing 

of major events in cell division. Rad24 is known to interact with a handful of cytokinetic 

proteins and some of their regulators, such as Cdc14-like Phosphatase Clp1, a 

temporary CAR component and regulator of mitotic exit (Wolfe, et al., 2006). Clp1 binds 

to Mid1 and is anchored to the division site through an interaction with the central region 

of Mid1 (aa 431-481; Clifford, et al., 2008), and SIN activity restricts Clp1 from returning 

to the nucleolus until cell division is complete (Chen, et al., 2008). Our results show that 

Mid1 is affected by the deletion of Rad24 by remaining nodal during G2 and returning to 

the nucleus early after CAR constriction, similar to Clp1-6A phosphomutant cells (Chen, 

et al., 2008). Additionally, it has been shown that Clp1 activity regulates Cdc15 and 

other components of CAR assembly and stability –	myosin II in particular –	and that 

Mid1 is required to recruit Clp1 to the CAR (Clifford, et al., 2008). The absence of 

Rad24 to directly facilitate cytoplasmic sequestration of Mid1, in the same manner as 

with Clp1, would cause delays and/or perturbations in CAR formation and constriction. 

 Rad24 also plays an important role in Cdr2 localization, which is essential for the 

formation of Type I CAR precursor nodes (Rincon, et al., 2017; Almonacid, et al., 2009; 

Moseley, et al., 2009). Cortical targeting of Mid1 is dependent on its interaction with 

Cdr2 (Breeding, et al., 1998; Almonacid, et al., 2009) and Mid1 localization is controlled 

by Cdr2-containing Type I medial cortical nodes throughout interphase (Akamatsu, et 

al., 2014). Sid2 plays a role in Cdr2 dissociating from the cell cortex during division 
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(Rincon, et al., 2017). In rad24∆ cells, Cdr2-mEGFP did not leave the cell cortex during 

mitosis, was redistributed from the medial cortex toward the cell tips, and the intensity of 

Cdr2-mEGFP did not increase in the cytoplasm during mitosis (Rincon, et al., 2017). 

SIN activity restricts Cdr2 from returning to the medial cortex until cell division is 

complete (Rincon, et al., 2017). The loss of Rad24 could also affect Cdr2 localization to 

the cytoplasm during mitosis and cytokinesis, which in turn could have an effect on 

recruiting Mid1 to Type I nodes during the next round of cell division, producing a 

prolonged cytokinesis. This could account for changes in Mid1 distribution early in cell 

division, before CAR constriction occurs. 

 However, the interactions of Rad24 with Clp1 and Cdr2 would most likely only 

indirectly affect Mid1. Although Cdr2 recruits Mid1 to cell cortex and Type I nodes 

during interphase (Almonacid, et al., 2009; Moseley, et al., 2009), both proteins 

disperse from the CAR in a SIN-dependent manner as specific and separate entities; 

Cdr2 prior to mitotic entry (Akamatsu et al, 2014), and Mid1 in late anaphase just before 

CAR constriction (DeWitt A, Gould K, and Hart D; article in progress). The interaction 

that Cdr2 has with Rad24 is most likely independent from Mid1 because of this. Since 

SIN activation during cell division promotes Cdr2 interaction with Rad24 (Rincon, et al., 

2017), Rad24 would not be in complex with Cdr2 at the same time that it interacts with 

Mid1 in the Type I interphase nodes (Rincon, et al., 2014). Likewise, Clp1 remained in 

its typical localization configuration - nucleolar during interphase and cytoplasmic during 

mitosis - even in rad24∆ cells. Clp1 was ectopically bound to the nucleolus in rad24∆ 

cells only when cytokinetic stress was induced with Latrunculin A (Mishra, et al., 2005), 

which depolymerizes actin filaments (Ayscough, et al., 1997). The delays brought on in 



 

81	

the data presented here would not be influenced by this effect on Clp1 without the 

presence of Latrunculin A.  

 The cytokinetic delays seen in this work may be explained more readily when we 

examine the timing of key events in WT S. pombe cells during cytokinesis (Wu, et al., 

2003). Mid1 shuttles from nucleus to nodes in G2 roughly 90 minutes before mitotic 

onset marked by SPB separation (Nabeshima, et al., 1998), but is mostly located in the 

nucleus during interphase. Myo2, Cdc4, Rlc1, Rng2 are located in the cytoplasm during 

interphase (Wu, et al., 2003). The G2/M transition occurs roughly 10 minutes prior to 

mitotic onset; upon mitotic entry, Mid1 is exported from the nucleus, and cortical Mid1 

concentration increases with Plo1 activation and initiates the recruitment of CAR 

components to maturing cytokinetic nodes, starting with Rng2 and the myosin II 

subunits (Bähler, et al., 1998; Almonacid, et al., 2011). Plo1 phosphorylation triggers 

Rng2 binding on Mid1’s N-terminus (aa 1-422), the portion of the protein associated 

with assembling the cytokinetic nodes and modulating cortical stability (Almonacid, et 

al., 2011).  

 Interestingly, the region of Mid1 phosphorylated by Plo1 where Rng2 binds, 

along with the Sid2 phosphorylation site at S432, were found to be conserved in Mid1, 

at least among some yeasts (section 3.3 of this thesis). By 2 minutes after mitotic onset, 

Mid1 has completed nuclear export and is stably dimerized at its C2 domains at the cell 

cortex (Sun, et al., 2015), and its need for Cdr2-anchorage is bypassed by its 

amphipathic helix binding directly to the plasma membrane (Almonacid, et al., 2011). 

Cdc15 and Cdc12 join Mid1 as nodes begin to condense and coalesce into the CAR 

(Fankhauser, et al., 1995; Carnahan and Gould, 2003). It is of note that actin regulator 
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Cdc15 and formin Cdc12 are known SIN targets (Hatchet and Simanis, 2008; Bohnert, 

et al., 2013), and their mislocalization could have definitive effects on the CAR formation 

and constriction events downstream, such as actin filamentation and bundling. Also, 

Clp1 localization to the CAR is required for Cdc15 dephosphorylation, which affects 

CAR stability (Clifford, et al., 2008).  

 From 2 to 10 minutes after mitotic onset, actin polymerization begins (Arai and 

Mabuchi, 2002) and Tropomyosin Cdc8 as well as α-actinin Ain1 join the CAR at this 

time (Wu, et al., 2001; Balasubramanian, et al., 1992). By 10 minutes after mitotic 

onset, the CAR is fully mature (sharp) with all the necessary components for 

constriction in place - Mid1, Myo2, Cdc4, Rlc1, Rng2, Cdc15, Cdc12, actin, Cdc8, and 

Ain1 (Wu, et al., 2003). As the onset of CAR constriction coincides with the peak in SIN 

signaling (Sparks, et al., 1999; Bohnert, et al., 2013), at this point Sid2 has relocated 

from the SPBs to the CAR to form the mitosis-cytokinesis link. The Septins, GTP-

binding proteins that associate with the plasma membrane (Longtine, et al., 1996; Berlin 

et al., 2003; Tasto et al., 2003), and the second myosin heavy chain, Myp2, join the 

CAR 20 minutes into cytokinesis to facilitate CAR maintenance and eventual cell 

separation (Wu, et al., 2003; Takaine, et al., 2015). Mid1 is dispersed from the CAR, 

and at 37 minutes past mitotic entry, anaphase has completed and CAR contraction and 

disassembly begins (Wu, et al., 2003). CAR constriction is complete 67 minutes past 

mitotic onset, and daughter cells separate at 102 minutes (Wu, et al., 2003). Looking at 

these interactions, the cytokinetic delays brought on by the lack of Rad24 are most 

likely due to mislocalization of Mid1 early in CAR formation, while the cytokinetic nodes 

are maturing, just before mitotic onset.  
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 SIN-dependent localization of Mid1 requires Rad24. It would make sense in 

light of the timing of these known interactions, that Rad24 transiently binds and 

sequesters Mid1 monomers in the cytoplasm. Mid1’s dimer stabilization sites (aa 616-

635) in the C2 domain (Sun, et al., 2015) are in close proximity to the region where 

Mid1 interacts with Clp1, Cdr2, and Rad24 (aa 329-531), and also to a site known to be 

involved in oligomer stabilization (aa 309-453; Clifford, et al., 2008; Almonacid, et al., 

2009; Saha and Pollard, 2012b). It could be possible that dimerization and/or 

oligomerization inhibits Rad24 binding simply because phosphorylated Sid2 sites are 

structurally unavailable due to the number of Mid1 binding partners. The interaction 

between Mid1 and Rad24 potentially occurs when Mid1 is exported from the nucleus, or 

when it disperses from the CAR before constriction, or both. That Mid1 may bind to 

Rad24 in binding assays with Mid1-GFP and Mid14RXXSA-GFP isolated from cells 

mitotically synchronized in prometaphase may be more evidence for Mid1 monomers 

interacting preferentially with Rad24 (section 3.1 of this thesis). Even though our binding 

assays were an in vitro test, they remain a reflection of Mid1’s phosphorylation state in 

early mitosis. The Mid1-NG mislocalization and cytokinetic delays seen in this data 

would make sense if this were the case. It would also preclude the notion of Rad24 

stabilizing Mid1 oligomers at the cell cortex. Further research would be needed, 

however, to resolve how mid13A monomers are still shuttled back to the nucleus early in 

the presence of Rad24 (Sun et al., 2015).  

 Myosin regulatory light chain and F-actin recruitment are reliant on Rad24 

for proper CAR recruitment and constriction. Delays in myosin regulatory light chain 

and actin recruitment to the CAR are consistent with previous results obtained with the 
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Mid14RXXSA mutant (DeWitt A, Gould K, and Hart D; article in progress), however, we 

report significantly deferred CAR constriction (section 4.1 and 4.2 of this thesis) with the 

absence of Rad24, as compared to accelerated CAR constriction seen in the Mid14RXXSA 

mutant. Rlc1 was recruited to the CAR early in Mid14RXXSA mutant cells, and this 

contributed to impairment of CAR assembly, disordered CAR structures, and 

accelerated CAR constriction (DeWitt A, Gould K, and Hart D; article in progress).  

 CAR assembly was also faster in cells expressing monomeric mid13A than in 

wild-type cells (Sun, et al., 2015), but rates of CAR constriction were the same. There 

are definite phenotypic similarities seen between the Mid14RXXSA phosphomutuant, 

monomeric mid13A mutant, and rad24∆ cells, but it seems that the timing of events is 

affected differently. Further research to test for Sid2-dependent interactions between 

Rad24 and Cdc15 or Cdc12 could shed more light on how Rad24 affects CAR 

formation.   

 Mid1 is the common factor for division plane positioning through the CGN and 

SIN (Rincon and Paoletti, 2012). In addition, Mid1 could be the common factor for 

polarized cell growth and actin reorganization through the MOR and the SIN. More 

research is needed in this area to uncover the mechanistic link between the SIN and the 

MOR pathway. Further research in this area could involve more in vivo studies such as 

live cell videomicroscopy in cdc12 and cdc15 temperature sensitive mutants crossed 

with a rad24∆	strain, or more biochemical assays such as coimmunoprecipitation in vivo 

of Rad24/Mid1 from mitotically synchronized cells. Elucidation of Mid1’s N-terminal 

crystal structure would also be extremely helpful. We conclude that Rad24 modulates 

CAR formation through Mid1 and that Rad24 is necessary for correct placement of F-
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actin and myosin-II and proper CAR constriction. Due to the highly conserved nature of 

proteins involved in major S. pombe cytokinetic pathways, these findings could have 

wider implications for the study of cell division and cancer in humans and other higher 

organisms. 
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6 Supplemental  
 
 

 
 
Figure S1. Delay in Mid1-facilitated assembly of the CAR coincides with a delay in Myosin 
recruitment to the CAR and deferred CAR constriction. An overlay of Mid1-NeonGreen and Rlc1 in 
the same dividing S. pombe cells in shown. (A) Mid1-NeonGreen and Rlc1-Tomato in Mid1-NG Sid4-RFP 
Rlc1-tomato strain #197. (B) Mid1-NeonGreen and Rlc1-Tomato in Mid1-NG Sid4-RFP Rlc1-tomato 
rad24∆ strain #354.  
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Figure S2. Clustal Omega Multiple Sequence Alignment of yeast Mid1 sequences reveals multiple 

conserved motifs and serines. Motifs important for node assembly and Sid2 phosphorylation are shown 

in green boxes. Conserved serines are highlighted in yellow.  
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Figure S3. Additional Logos from MEME Motif Analysis reveals conserved residues 
among yeasts. B, C, and D are #2 (gold), #5 (green), and #6 (red) motifs, respectively.  
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