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Abstract 

 

 

Differentiating psychogenic nonepileptic seizures from epileptic seizures is a difficult task that 

requires timely recording of psychogenic events using video electroencephalography (EEG). 

Interpretation of video EEG to distinguish epileptic features from signal artifacts is error prone 

and can lead to misdiagnosis of psychogenic seizures as epileptic seizures resulting in undue 

stress and ineffective treatment with antiepileptic drugs. In this study, an automated surface EEG 

analysis was implemented to investigate differences between patients classified as having 

psychogenic or epileptic seizures. Surface EEG signals were grouped corresponding to the 

anatomical lobes of the brain (frontal, parietal, temporal, and occipital) and central coronal plane 

of the skull. To determine if differences were present between psychogenic and epileptic groups, 

magnitude squared coherence (MSC) and cross approximate entropy (C-ApEn) were used as 

measures of neural connectivity. MSC was computed within each neural frequency band (delta: 

0.5Hz-4Hz, theta: 4-8Hz, alpha: 8-13Hz, beta: 13-30Hz, and gamma: 30-100Hz) between all 

brain regions. C-ApEn was computed bidirectionally between all brain regions. Independent 

samples t-tests were used to compare groups. The statistical analysis revealed significant 

differences between psychogenic and epileptic groups for both connectivity measures with the 

psychogenic group showing higher average connectivity. Average MSC was found to be lower 

for the epileptic group between the frontal/central, parietal/central, and temporal/occipital 

regions in the delta band and between the temporal/occipital regions in the theta band. Average 

C-ApEn was found to be greater for the epileptic group between the frontal/parietal, 

parietal/frontal, parietal/occipital, and parietal/central region pairs. These results suggest that 

differences in neural connectivity exist between psychogenic and epileptic patient groups. 
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Chapter 1.   Introduction 

 

 

1.1   Introduction  

 

A seizure is an abrupt event which affects at least one of the sensory, motor, or autonomic 

functions [1]. Seizures can be broadly categorized into two groups: “neurogenic” or epileptic 

seizures (ES) and “psychogenic” nonepileptic seizures (PNES). Clinical presentation of ES and 

PNES are often similar, affecting the sensory, motor, autonomic, and/or psychic functions and 

can include impairment or loss of consciousness, involuntary movements, and alterations in 

behavior [1], [2]. The primary distinguishing characteristic is abnormal neural activity, which is 

present during ES but not during PNES, suggesting that PNES are not neurological in origin [1]-

[3]. The focus of this study is on differentiating between two groups of patients: those who 

experience ES and those who experience PNES. Surface electroencephalogram (EEG) is a 

recording technique that measures the brain’s electrical activity via surface electrodes placed on 

the scalp. EEG recordings capturing various neural states including, normal wakefulness, sleep, 

psychogenic, and epileptic events, from the two groups will be evaluated for differences in 

neural activity. 

Confusion of the symptoms of ES and PNES can result in diagnostic delays of 7-10 years 

[4].  PNES are often classified as ES leading to patients being treated with antiepileptic drugs 

(AEDs). The use of AEDs to treat PNES has been shown to be ineffective and may actually 

result in worsening of symptoms [2]-[5]. Currently, video EEG is the gold standard for the 

diagnosis of PNES [5]. Video EEG combines surface EEG and video recording to allow 

clinicians to observe the physical presentation of a seizure while measuring electrical neural 

activity to identify the epileptic discharges that are indicative of an ES. This has been deemed the 

most effective and accurate form of diagnosis  for PNES [2]. However, video EEG requires 
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recording while the patient is having an active seizure making it best suited for patients who 

experience frequent seizures. Additionally, video EEG is time consuming and may cause the 

patient unwanted stress due to anticipation of a seizure and desire to replicate symptoms [2].   

Automated EEG analysis can be used to aide in the detection of abnormal brain activity 

and, more importantly, to potentially discriminate between neurogenic and psychogenic seizures. 

While EEG signals have been analyzed using nonparametric time-frequency and information 

theoretic measures to predict, detect, and classify seizure events in epileptic patients [6]–[14], 

few studies have directly applied these techniques to differentiate PNES from ES. Outside of 

EEG analysis, MRI based studies have shown that epilepsies are associated with brain network 

abnormalities, yet few of these studies have been applied to study PNES [4]. 

Magnitude squared coherence (MSC) and cross approximate entropy (C-ApEn) are 

nonparametric time-frequency and information theoretic measures, respectively. Both are 

measures of the statistical similarity between two time series in a network. MSC measures how 

well two time series match one another at various frequencies [13]. C-ApEn measures the pattern 

complexity of two interconnected time series [15], [16]. In this study MSC and C-ApEn were 

applied to surface EEG data to provide a measure of how the regions of the brain interact in 

patients who experience neurogenic seizures versus patients who experience psychogenic 

seizures. Furthermore, MSC allowed for evaluation of brain region interactions within the brain 

wave frequency bands.  
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1.2   Purpose 

 

The purpose of this study was to explore differences in neural connectivity in surface EEG 

recordings from patients who experience ES versus patient who experience PNES. Due to the 

underlying differences between the seizure types, it was expected that the two patient groups 

would exhibit neural differences during both normal and seizure activity as recorded using 

surface EEG. MSC and C-ApEn were used to perform connectivity measures between brain 

regions to obtain a better understanding of how various regions of the brain interact. The goal 

was to identify differences in connectivity between the two patient groups that could act as a 

biomarker using surface EEG recordings alone. A successful biomarker could be implemented as 

a means for seizure type classification and would be valuable to clinicians during the epileptic 

diagnostic process. 

 

1.3   Scope  

 

The focus of this study was on how regions of the brain interact in patients who suffer from 

ES or PNES through analysis of surface EEG recordings. MSC was used as a time-frequency 

measure of linearity in phase relationship between two surface EEG signals. C-ApEn was used 

as a nonlinear information theoretic measure of complexity between two surface EEG signals. 

Deidentified EEG signal data were provided by the Spectrum Health Office of Clinical Research 

in conjunction with the Epilepsy Monitoring Unit. Data were recorded using the standard clinical 

10-20 surface EEG system. Channel electrode signals were selected according to the 10-20 

protocol and combined to represent regions corresponding to the anatomical features of the brain. 

Five regions of interest were identified: (1) Frontal, (2) Parietal, (3) Temporal, (4) Occipital, and 

(5) Central. The first four regions correspond to electrode placement over the four lobes of the 
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brain, while the fifth region corresponds to the central recording electrodes placed along the 

coronal plane. Using the provided surface EEG data, MSC and C-ApEn were computed between 

all regions of the brain over all time and for all subjects. Differences in region-region interactions 

between the epileptic and nonepileptic groups were evaluated for statistical importance. Mean 

MSC in the region-region interactions were further evaluated in the brain wave frequency bands: 

(1) Delta (0.5-4Hz), (2) Theta(4-8Hz), (3) Alpha(8-13Hz), (4) Beta(13-30Hz), and (5) 

Gamma(30-100Hz), to identify differences in neural activity between the two patient groups. 

 

1.4   Assumptions 

 

For this study, it was assumed that each patient had been accurately classified as suffering 

from ES or PNES. The assumption of independence between ES and PNES allowed for 

comparison between the two groups. It was expected that some of the data contained 

physiological artifact due to movement and hyperventilation based on EEG interpretations for 

each patient provided by Spectrum Health. Additionally, it was assumed that surface EEG 

recordings were not necessarily taken during active seizure events. This assumption was based 

from the patient notes prepared by the neurologist indicating normal wakefulness, sleep, and 

seizure activity throughout the length of the recordings. The time of occurrence of events were 

not indicated in the patient notes, therefore it was assumed that the surface EEG data were 

representative of a mixture of both normal signals and non-normal (psychogenic or epileptiform) 

signals. 
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1.5   Hypothesis 

 

Previous studies have found that epilepsies have been associated with brain network 

abnormalities [4]. Of the few studies that have investigated PNES, findings suggest that PNES 

may be correlated with altered interactions between brain areas suggesting that network 

information could be a potential indicator for PNES differentiation [4]. In comparing ES and 

PNES groups, studies have found that patients classified as experiencing ES or PNES have 

different brain connectivity than individuals who do not experience seizures, but patients 

exhibiting psychogenic type seizures were not as easily distinguished from those exhibiting 

neurogenic type using connectivity measures [4]. These findings suggest a need for a more 

robust way to differentiate between ES and PNES. Some techniques that have been applied in 

seizure detection and classification include exploration of differences in lobal connectivity [4], 

[6], [7], entropies [8], [9], and time frequency analysis [7], [11]. Theoretically, surface EEG 

signals recorded during ES or PNES should be distinctive due to the differences in the 

physiological nature of the two types of seizures. Because ES and PNES were expected to 

exhibit differences in neural activity, time frequency and entropy analysis were implemented to 

determine if differences could be identified from surface EEG recordings. For this study, the 

available surface EEG data analyzed included various states of neural cognizance including 

normal wakefulness, sleep, and possible seizure activity. It was hypothesized that the application 

of time-frequency and  information theoretic measures would reveal differences in neural 

connectivity with respect to brain region interactions and neural frequency band as measured 

using MSC and C-ApEn. 
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1.6   Significance 

 

The primary goal of this study was to provide Spectrum Health with information to aid in the 

differentiation of epileptic from psychogenic nonepileptic seizures during the diagnosis phase. 

The application of MSC and C-ApEn to surface EEG recordings between brain regions and 

within the neural frequency bands was implemented to increase understanding of differences in 

neural connectivity between psychogenic and neurogenic groups and to identify a potential 

biomarker. The current process for classifying patients as experiencing ES or PNES has proved 

to be lengthy and difficult one. A well-defined biomarker could provide value to clinicians in 

automating the process of seizure type analysis to increase diagnostic and workload efficiencies.  

 

1.7   Definitions 

 

Epileptic Seizure: A seizure that involves irregular neuronal activity in the brain. 

Psychogenic Nonepileptic Seizure: An event that resembles the physical and sensational 

aspects of an epileptic seizure but lacks irregular neuronal activity in the brain.  

Magnitude Squared Coherence: A frequency measure that estimates the similarity of two time 

series. 

Cross Approximate Entropy: A measure of the conditional complexity of two time series. 
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Chapter 2.   Differentiating Epileptic from Psychogenic Nonepileptic EEG Signals using 

Time Frequency and Information Theoretic Measures of Connectivity 

 

 

Abstract 

 

Differentiating psychogenic nonepileptic seizures from epileptic seizures is a difficult task that 

requires timely recording of psychogenic events using video electroencephalography (EEG). 

Interpretation of video EEG to distinguish epileptic features from signal artifacts is error prone 

and can lead to misdiagnosis of psychogenic seizures as epileptic seizures resulting in undue 

stress and ineffective treatment with antiepileptic drugs. In this study, an automated surface EEG 

analysis was implemented to investigate differences between patients classified as having 

psychogenic or epileptic seizures. Surface EEG signals were grouped corresponding to the 

anatomical lobes of the brain (frontal, parietal, temporal, and occipital) and central coronal plane 

of the skull. To determine if differences were present between psychogenic and epileptic groups, 

magnitude squared coherence (MSC) and cross approximate entropy (C-ApEn) were used as 

measures of neural connectivity. MSC was computed within each neural frequency band (delta: 

0.5Hz-4Hz, theta: 4-8Hz, alpha: 8-13Hz, beta: 13-30Hz, and gamma: 30-100Hz) between all 

brain regions. C-ApEn was computed bidirectionally between all brain regions. Independent 

samples t-tests were used to compare groups. The statistical analysis revealed significant 

differences between psychogenic and epileptic groups for both connectivity measures with the 

psychogenic group showing higher average connectivity. Average MSC was found to be lower 

for the epileptic group between the frontal/central, parietal/central, and temporal/occipital 

regions in the delta band and between the temporal/occipital regions in the theta band. Average 

C-ApEn was found to be greater for the epileptic group between the frontal/parietal, 
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parietal/frontal, parietal/occipital, and parietal/central region pairs. These results suggest that 

differences in neural connectivity exist between psychogenic and epileptic patient groups. 

 

2.1   Introduction 

 

Seizures are involuntary and abrupt events which affect at least one of the sensory, motor, or 

autonomic functions [1]. Epileptic seizures (ES) and psychogenic nonepileptic seizures (PNES) 

share many of the characteristic movements, sensations, and experiences that occur during a 

seizure but differ in their underlying etiology. ES or “neurogenic” seizures stem from an 

underlying neurological condition and are marked by epileptic discharges resulting from 

abnormal and/or synchronous brain activity [17]. In contrast, these epileptic discharges are 

absent during PNES. As the term “psychogenic” implies, PNES are psychological in origin and 

have been diagnostically classified as dissociative or somatoform disorders and are thought to be 

a stress response that can be physical, emotional, or social in nature [1]-[3], [5], [10].  

The closeness in physical presentation can make differentiating between ES and PNES 

particularly challenging. The current process of psychogenic seizure classification relies heavily 

on careful evaluation of video electroencephalography (EEG) by an experienced physician 

during an active seizure event. This real-time requirement makes video EEG unsuitable for 

patients whose seizure events are infrequent and unpredictable. A high level of expertise is 

required to accurately identify epileptic discharges in EEG signals from artifacts arising from 

movements, breathing, and environmental noise that can have similar signal appearance. This 

strict process of distinguishing between psychogenic and neurogenic seizures can result in 

diagnostic delays as great as 7-10 years [4], suggesting a need for additional methods that could 

be applied to increase efficiency and accuracy.  
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Automated signal processing is complimentary to complex bio-signals like those of the 

human brain [6]-[14]. More specifically, automated EEG analysis can be used to aide in the 

detection of abnormal brain activity and, more importantly, to potentially discriminate between 

neurogenic and psychogenic seizures. EEG signals have been analyzed to predict, detect, and 

classify seizure events in epileptic patients through exploration of differences in lobal 

connectivity [4], [6], [7], entropies [8], [9], and time frequency analysis [7], [11]. However, few 

of these techniques have been directly applied to evaluate differences between epileptic and 

psychogenic groups.  

Previous studies have found that epilepsies have been associated with brain network 

abnormalities [4]. Of the few studies that have investigated PNES, findings suggest that PNES 

may be correlated with altered interactions between brain areas suggesting that network 

information could be a potential indicator for PNES differentiation [4]. In comparing ES and 

PNES groups, studies have found that patients classified as experiencing ES or PNES have 

different brain connectivity than individuals who do not experience seizures, but patients 

exhibiting psychogenic type seizures are not as easily distinguished from those exhibiting 

neurogenic type seizures using connectivity measures [4].  

In theory surface EEG signals recorded from patients who experience ES and PNES 

should be distinctive due to the differences in their physiological nature. In this study magnitude 

squared coherence (MSC) and cross approximate entropy (C-ApEn) will be used to evaluate 

neural connectivity between brain regions during both normal activity and seizure activity as 

recorded using surface EEG obtained from two sets of patients: those who experience neurogenic 

seizures and those who experience psychogenic seizures. The time-frequency feature of MSC 

will be used to further investigate brain region interactions in the delta (0.5-4Hz), theta(4-8Hz), 
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alpha(8-13Hz), beta(13-30Hz), and gamma(30-100Hz) frequency bands. These techniques will 

increase understanding of how various regions of the brain interact while revealing any 

differences in neural connectivity in the two patient groups that could be implemented during the 

process of epileptic and psychogenic seizure type distinction.  

 

2.1   Methods 

2.2.1   Subject Data  

Deidentified surface EEG recordings from 18 subjects were provided to Grand Valley 

State University by the Spectrum Health Office of Clinical Research in conjunction with the 

Epilepsy Monitoring Unit. Subjects were categorized into two groups based on the incidence of 

psychogenic or epileptic seizures: 0 (control or psychogenic) or 1 (epileptic). EEG signals were 

recorded using the international standard 10-20 protocol. The surface EEG recordings for all 

patients had a sampling rate of 200 Hz. Length of recording varied from 8.7 minutes to 10.5 

minutes.  Subject numbers, grouping, and EEG interpretations were provided along with the 

EEG data. EEG interpretation notes gave limited information about the subject’s state during 

recording (sleep or wakefulness), the presence of seizure activity (psychogenic or epileptic) and 

artifacts, as well as the suspected type of epilepsy for subjects in the epileptic group. The timing 

of events was not specified in the patient notes. The EEG interpretations indicated that the 

surface EEG data provided from all subjects were therefore representative of a combination of 

both normal EEG signals and non-normal (psychogenic or epileptiform) EEG signals. See 

Appendix A for EEG interpretation notes. 
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2.2.2   Data Analysis 

All surface EEG signals were analyzed using non-parametric information theoretic and 

time-frequency measures to assess network connectivity between regions of the brain using 

MATLAB R2019a. Five brain regions were selected for analysis: (1) Frontal, (2) Parietal, (3) 

Temporal, and (4) Occipital corresponding to the lobes of the brain, as well as a (5) Central 

region that corresponds to the positional placement of recording electrodes along the coronal 

plane. Figure 2.1 demonstrates the placement of electrodes according to the 10-20 standard with 

the brain regions labeled.  

 

Figure 2.1. Electrode placement for EEG recording with brain region labels [18] 

 

A total of 10 pairs of regions were evaluated. Regions were not split by anatomical 

hemisphere. The region pairs are shown in Table 2.1. 
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Table 2.1. Region Pairs of Interest 

 

Region Number Region Pair 

1 Frontal / Parietal 

2 Frontal / Temporal 

3 Frontal / Occipital 

4 Frontal / Central 

5 Parietal / Temporal 

6 Parietal / Occipital 

7 Parietal / Central 

8 Temporal / Occipital 

9 Temporal / Central 

10 Occipital / Central 

 

Frequency analysis further allowed for evaluation of connectivity between brain regions 

in the neural frequency bands: Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-13 Hz), Beta(13-30 

Hz), and Gamma (30-100 Hz). The diagram in Figure 2.2 illustrates the full data analysis 

process. 

 

Figure 2.2. Functional block diagram of the data analysis process 
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2.2.2.1   Preprocessing 

 

A 2nd order Butterworth notch filter at 60 Hz was applied to the raw surface EEG signals 

to remove powerline interference. A reference average was applied by subtracting the average of 

all the EEG electrodes from the EEG signal for all subject data. 

2.2.2.2   Brain Regions of Interest 

 

The surface EEG data consisted of 23 recording channels based on the international 

standard 10-20 protocol for EEG electrode placement. EEG signal channels were extracted and 

grouped according to Table 2.2. The EEG signals were averaged within each group to obtain a 

single representative time series for each brain region.  

 

Table 2.2. EEG Signal Channels Grouping for each Brain Region 

Brain Region EEG Signal Channels 

Frontal 'Fp1' 'Fp2' 'F3' 'F4' 'F7' 'F8' 

Parietal 'P3' 'P4' 'P7' 'P8' 

Temporal 'T7' 'T8' 'T1' 'T2' 

Occipital 'O1' 'O2' 

Central 'C3' 'C4' 
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 2.2.2.3   Magnitude Squared Coherence 

  

Magnitude squared coherence (MSC) is a technique that measures the linear relationship 

between two time series as a function of frequency and is defined by 

 

𝑀𝑆𝐶(𝑛, 𝑘) =  
|𝑆𝑥𝑦(𝑛,𝑘)|2

𝑆𝑥𝑥(𝑛,𝑘)𝑆𝑦𝑦(𝑛,𝑘)
  (2.1) 

 

where 𝑆𝑥𝑥 and 𝑆𝑦𝑦 are the auto power spectra and 𝑆𝑥𝑦 is the cross power spectrum of the input 

signals 𝑥(𝑛) and 𝑦(𝑛), 𝑛 is the time index, and 𝑘 is the frequency index. The approach used for 

calculating MSC was proposed by Lovett and Ropella  [19]. To begin, the short term minimum 

bias eigentransform (STET) was computed for the input signals to obtain 𝑋𝑙[𝑛, 𝑘] and 𝑌𝑙[𝑛, 𝑘] 

defined by  

 

𝑋𝑙[𝑛, 𝑘] =  ∑ 𝑥 [𝑛 + 𝑚 −
𝑀

2
] 𝑉𝑙[𝑚]𝑒−𝑗2𝜋𝑚𝑘/𝑀𝑀−1

𝑚=0    (2.2) 

 

where 𝑥[𝑛 − 𝑚 − 𝑀/2] is a the input signal to be evaluated at 𝑛 time points with percent 

overlap of 𝑀/2, 𝑉𝑙[𝑚] is spheroidal sequence of 𝑙 mutli-taper windows of length 𝑀, and 𝑘 is the 

frequency index. Using the results of the STET, the power spectra were computed as  

 

𝑆𝑥𝑥 =  | ∑ 𝑋𝑙[𝑛, 𝑘]|2𝐿−1
𝑙=0                         (2.3) 

𝑆𝑦𝑦 =  | ∑ 𝑌𝑙[𝑛, 𝑘]|2𝐿−1
𝑙=0                          (2.4) 

𝑆𝑥𝑦 =  ∑ 𝑋𝑙[𝑛, 𝑘]𝑌𝑙
∗[𝑛, 𝑘]𝐿−1

𝑙=0                   (2.5) 
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MSC values lie between 0 and 1, revealing the linearity of phase relationship of two 

signals over time [19]. An MSC value of 0 indicates a zero linear relationship while an MSC 

value of 1 indicates an ideal linear relationship.  

An algorithm to compute 𝑀𝑆𝐶(𝑛, 𝑘) was developed in MATLAB R2019a to evaluate 

neural connectivity between brain regions in the neural frequency bands. A spheroidal sequence 

of L = 7 mutli-taper windows with M = 1200 was generated using MATLAB’s discrete prolate 

spheroidal (Slepian) sequences (DPSS) function. Since fs = 200 Hz, the window length, M, was 

chosen to achieve a time resolution of 6 seconds and a frequency resolution of 0.167 Hz. The 

number of FFT points were chosen as 1200 to match the window length. The time increment was 

set to 600 for 50% overlap.  

 For all subjects, coherence spectrograms were obtained for each region pair spanning the 

neural frequency bands for the full length of recording. The region pair MSC values were further 

manipulated to obtain average MSC time series for each of the neural frequency bands. Finally, 

the time series data were averaged once more to obtain a single coherence value for each region 

in each neural frequency band. Figure 2.3 illustrates the process that was taken to obtain the final 

MSC averages. 

 
Figure 2.3. Flow Diagram of MSC Average Calculations 
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2.2.2.4   Cross Approximate Entropy 

 

Cross approximate entropy (𝐶 − 𝐴𝑝𝐸𝑛) is a non-linear directed measure that describes 

the pattern complexity or similarity between two times series 𝑥(𝑛) and 𝑦(𝑛), defined by  

 

𝐶 − 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =  𝛷𝑥𝑦
𝑚 (𝑟) −  𝛷𝑥𝑦

𝑚+1(𝑟)  (2.6) 

 

where 𝑚 is the dimension that describes the length of each data block to be compared, 𝑟 is a 

threshold that acts as a noise filter, and 𝑁 is the total length of the data. The process for 

computing C-ApEn is as follows: For two times series, 𝑥(𝑛) and 𝑦(𝑛), the length dimension 𝑚 

and the threshold  𝑟 are selected. As suggested by the literature [20], the value of 𝑚 is usually 

chosen as 2 and the value of 𝑟 is taken as 0.2𝑆𝐷𝑥 where 𝑆𝐷𝑥  is the standard deviation of the 

data 𝑥(𝑛) The input signals, 𝑥(𝑛) and 𝑦(𝑛), are normalized by subtracting the average of the 

signal and dividing by the standard deviation so that 𝑆𝐷𝑥 =  𝑆𝐷𝑦 = 1.  

 

𝑥′(𝑛) =  
𝑥(𝑛)−𝑥(𝑛)̅̅ ̅̅ ̅̅ ̅

𝑆𝐷𝑥
  (2.7) 

𝑦′(𝑛) =  
𝑦(𝑛)−𝑦(𝑛)̅̅ ̅̅ ̅̅ ̅

𝑆𝐷𝑦
  (2.8) 

 

Two sets of vectors  X(i)  and Y(j) of length m are created: 

 

𝑋(𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 1), … , 𝑥(𝑖 + 𝑚 − 1),       𝑖 = 1, 𝑁 − 𝑚 + 1  (2.9) 

𝑌(𝑗) = [𝑦(𝑗), 𝑦(𝑗 + 1), … , 𝑦(𝑗 + 𝑚 − 1),       𝑗 = 1, 𝑁 − 𝑚 + 1  (2.10) 
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The distance between vectors is defined as the absolute maximum difference between X(i) and 

Y(j): 

𝑑[𝑋(𝑖)  𝑌(𝑗)] =  𝑚𝑎𝑥𝑘=0,𝑚−1[|𝑥(𝑖 + 𝑘) − 𝑦(𝑗 + 𝑘)|]  (2.11) 

 

For a given X(i), the number of distances, d[X(i)  Y(j)], (j = 1, N − m + 1) that are close to the 

𝑚-point pattern formed by 𝑋(𝑖) within the threshold tolerance of ±𝑟 are found: 

 

𝑁𝑥𝑦
𝑚 (𝑖) = # 𝑜𝑓 𝑑[𝑋(𝑖)  𝑌(𝑗)]  ≤ 𝑟  (2.12) 

 

The ratio of Nxy
m (i)  to the total number of all m-point patterns, (N − m + 1) is then calculated to 

determine the frequency of occurrence of the m-point y patterns formed by Y(j), (j = 1, N − m +

1), being within the threshold tolerance of ±r to the m-point x pattern of a given X(i): 

 

𝐶𝑥𝑦
𝑚 (𝑖) =  

𝑁𝑥𝑦
𝑚 (𝑖)

𝑁−𝑚+1
  (2.13) 

 

Computation of Nxy
m (i) and  𝐶𝑥𝑦

𝑚 (𝑖) is repeated for all 𝑋(𝑖), (𝑖 = 1, 𝑁 − 𝑚 + 1). Next, the 

average frequency that all 𝑚-point patterns in 𝑌(𝑗) remain close for all 𝑚-point patterns in 𝑋(𝑖), 

𝛷𝑥𝑦
𝑚 (𝑟), is found by taking the natural logarithm of the ratio, Cxy

m (i) and averaging over i. 

 

𝛷𝑥𝑦
𝑚 (𝑟) =  

1

𝑁−𝑚+1
∑ ln 𝐶𝑥𝑦

𝑚 (𝑖)𝑁−𝑚+1
𝑖=1   (2.14) 
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The previous steps are repeated for m + 1 to obtain Φxy
m+1(r). Finally, C − ApEn(m, r, N) is 

found using Eqn. 2.6. 

For 𝑚 =  2, the meaning of 𝐶 − 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) can be interpreted as the difference 

between the average frequency that all 2-point patterns in 𝑌(𝑗) remain close for all 2-point 

patterns in 𝑋(𝑖) and the average frequency that all 3-point patterns in 𝑌(𝑗) remain close for all 3-

point patterns in 𝑋(𝑖). Intuitively, this provides the rate of new pattern generation from 

dimension 𝑚 = 3 to 𝑚 = 2 and thus the cross complexity of the two time series signals 𝑥(𝑛) 

and 𝑦(𝑛) [26]. A larger value of 𝐶 − 𝐴𝑝𝐸𝑛 would indicate higher complexity between the two 

signals and thus lower connectivity. Because 𝐶 − 𝐴𝑝𝐸𝑛 is a directed measure, it also provides a 

way to assess how connectivity varies based on directionality. In other words,  𝐶 − 𝐴𝑝𝐸𝑛  is 

different from 𝑥(𝑛)  to 𝑦(𝑛)  as compared to 𝑦(𝑛) to 𝑥(𝑛) . This allows for the establishment of 

not only connectivity but also directionality. 

A 𝐶 − 𝐴𝑝𝐸𝑛 algorithm was developed in MATLAB 2019a to evaluate neural 

connectivity between brain regions. The dimension 𝑚 defines the length of the data segments to 

be compared and was chosen as 2 and the threshold 𝑟 was chosen as 0.2𝑆𝐷, where 𝑆𝐷 represents 

the standard deviation of the input signals 𝑥(𝑛) and 𝑦(𝑛).  Each time series was normalized to 

obtain a 𝑆𝐷 = 1. Region pairs were evaluated in both directions, i.e. 𝐶 − 𝐴𝑝𝐸𝑛 was computed 

for 20 cases per subject. 

An additional time entropy analysis was implemented to observe how 𝐶 − 𝐴𝑝𝐸𝑛 changed 

over time for EEG signals recorded from an ES subject and a PNES subject. Subjects were selected 

based on the indication of a seizure event according to the EEG interpretation notes. 𝐶 − 𝐴𝑝𝐸𝑛 

was computed between the parietal/central brain region pair in the parietal to central direction at 5 



31 

 

second (1200 pt.) time intervals for one subject from each group. The 𝐶 − 𝐴𝑝𝐸𝑛 values were 

plotted to investigate changes in 𝐶 − 𝐴𝑝𝐸𝑛 over time.  

2.2.3   Statistical Analysis 

An independent samples t-test was performed between epileptic and psychogenic groups 

for each region pair in each frequency band of interest for MSC and for each region pair (bi-

directionally) for C-ApEn. This method of statistical analysis was implemented to determine if 

there was an overall difference in neural connectivity between the two patient groups as 

measured by MSC and C-ApEn. The epileptic and psychogenic groups were assumed to be 

independent groups with independence of observations. Equal variances were not assumed. 

Normality and outliers were assessed using the descriptive statistics toolset in SPSS. The 

Shapiro-Wilk test was used to check for normality and boxplots were used to determine the 

presence of outliers within groups. Due to the variability in patient state during recording as 

noted in the EEG interpretations (Appendix A), outliers were expected to be present and 

therefore not removed from the initial analysis of MSC and C-ApEn. For C-ApEn, outliers 

appearing consistently were removed from the analysis and independent samples t-tests were 

repeated.  

 

2.3   Results 

2.3.1   Raw EEG Signals 

Raw EEG data from one subject in the epileptic group and one subject in the psychogenic 

group were plotted in MATLAB for visual comparison. Raw signals from a frontal lead, parietal 

lead, and occipital lead are shown for 350 seconds of recording in Figure 2.4. Differences in the 



32 

 

raw EEG signals from each signal lead between the two groups were not obvious through visual 

inspection.  

 

 

Figure 2.4. Raw EEG signals from frontal, parietal, and occipital leads from PNES and ES groups 

2.3.2   Magnitude Squared Coherence 

2.3.2.1   Coherence Spectrograms 

 

MSC was computed between all regions across the full neural frequency range (0-100 

Hz) to obtain coherence spectrograms. Coherence spectrograms for each region pair from one 

subject in each group (S8 and S15) are shown in Figure 2.5 and Figure 2.6. The spectrograms 

were selected to provide examples of MSC from an EEG recording where a ‘psychogenic’ event 

occurred (S8), and an EEG recording where an ‘epileptic’ event occurred (S15) as indicated by 

the EEG interpretation notes. The remaining coherence spectrograms for all subjects are shown 

in Appendix B – MSC Figures.  
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Figure 2.5. Coherence spectrogram psychogenic event: Subject 8 

 

From Figure 2.5, coherence was low for frequencies <20Hz apart from the frontal/parietal 

and parietal/occipital region pairs showing some elevated coherence at lower frequencies. 

Coherence was low between the frontal/temporal and temporal/occipital regions across time and 

frequency. For the frontal/parietal, frontal/occipital, and frontal/central regions elevated 

coherence was observed from 0-250 seconds and 300-500 seconds with a prominent decrease in 

coherence from 250-300 seconds. In contrast, the opposite pattern was observed for the 

temporal/central region pair, which showed an increase in coherence between 250-300 seconds. 

Elevated coherence was also observed between the parietal/central regions. 
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Figure 2.6. Coherence spectrogram epileptic event: Subject 15 

 

From Figure 2.6, the coherence spectra for each region pair showed broad band increases 

in coherence across time with the largest increases seen between 200-400 seconds. Coherence 

was the highest between the frontal/parietal, frontal/occipital, and parietal/occipital regions. The 

remaining region pairs showed similar patterns in coherence of a lesser degree.  

In comparing the two groups, coherence in the ‘ES’ spectrogram showed what appeared 

to be broad band spikes in coherence, from 0-100Hz, particularly in the frontal/parietal, 

frontal/occipital, and parietal/occipital region pairs, while coherence in the ‘PNES’ spectrogram 

showed increases in coherence in a more gradual manner. Both groups showed elevated 

coherence in the frontal/parietal, frontal/central/ parietal/occipital region pairs.  
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2.3.2.2   Mean MSC 

 

The MSC spectra between each region pair were averaged over the five neural frequency 

band ranges and over all time for each subject (Figure 2.7 – Figure 2.11). Mean MSC for each 

region pair in each neural frequency band were compared using an independent samples t-test 

(𝐻𝑜: 𝑁𝑜 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑟𝑛𝑐𝑒 𝑖𝑛 𝑀𝑆𝐶 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐸𝑆 𝑎𝑛𝑑 𝑃𝑁𝐸𝑆). A * indicates significance for p<0.10 

and ** indicates significance for p<0.05. See Appendix C for data normality and outlier results. 

Figure 2.7. Average and standard error of the mean MSC in the Delta band 
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Figure 2.8. Average and standard error of the mean MSC in the Theta band 

 

 

Figure 2.9. Average and standard error of the mean MSC in the Alpha band 
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Figure 2.10. Average and standard error of the mean MSC in the Beta band 

 

 

Figure 2.11. Average and standard error of the mean MSC in the Gamma band 

 

In the delta band, (Figure 2.7), average coherence between the frontal/central regions, the 

parietal/central regions, and the temporal/occipital regions for the psychogenic group were found 
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to be significantly larger than that of the epileptic group. All other coherence differences were 

not significant. Based on appearance, average coherence was largest between the frontal/parietal 

regions for both groups. High average coherence was also observed between the frontal/occipital 

regions and between the parietal/occipital regions. The psychogenic group showed higher 

average coherence than the epileptic group for 8 out of the 10 region pairs, with the epileptic 

group only showing higher coherence between the frontal/parietal regions and  between the 

temporal/central regions.  

In the theta band, (Figure 2.8), Average coherence between the temporal/occipital regions 

was found to be significantly different between the two groups. All other differences were not 

significant. Based on appearance, average coherence was elevated between the frontal/parietal 

regions, the parietal/occipital regions, and the frontal/occipital regions for both groups. The 

psychogenic group showed higher average coherence between the frontal/temporal, 

frontal/central, parietal/temporal, parietal/occipital, parietal/central, and temporal/occipital 

regions. Average coherence between the occipital/central regions appeared to be similar between 

the two groups.  

For the alpha band, (Figure 2.9), average coherence was elevated between the 

frontal/parietal regions, the frontal/occipital regions, and the parietal/occipital regions. Average 

coherence between epileptic and psychogenic groups were similar with no significant differences 

present. However, average coherence appeared to be slightly larger for the epileptic group 

between the frontal/parietal, frontal/occipital, parietal/temporal, temporal/occipital, and 

temporal/central regions.   

For the beta band, (Figure 2.10), high average coherence was observed between the 

frontal/parietal regions, the frontal/occipital regions, and the parietal/occipital regions. Average 
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coherence between epileptic and psychogenic groups were similar with no significant differences 

present. However, average coherence appeared to be slightly larger for the epileptic group 

between the frontal/parietal, frontal/occipital, parietal/temporal, parietal/occipital, 

temporal/occipital, and temporal/central regions.   

For the gamma band, (Figure 2.11), average coherence was largest between the 

frontal/parietal regions and the parietal/occipital regions. The epileptic group showed higher 

average coherence in the frontal/parietal, frontal/occipital, and parietal/temporal region pairs. 

The psychogenic group showed higher average coherence in the parietal/occipital, 

parietal/central, and temporal/central region pairs. No significant differences in average 

coherence were found for the gamma band.  

In the delta and theta neural frequency bands, 3 of 10 region pairs tested were found to 

have significant differences between the epileptic and psychogenic groups for average 

coherence. The alpha, beta, and gamma neural frequency bands were not found to have 

significant differences between groups for average coherence.  

 

2.3.3   Cross Approximate Entropy 

2.3.3.1   C-ApEn: All 18 subjects 

 

Cross approximate entropy between each region pair in both directions were compared 

between epileptic and psychogenic groups using an independent samples t-test 

(𝐻𝑜: 𝑁𝑜 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑟𝑛𝑐𝑒 𝑖𝑛 𝐶 − 𝐴𝑝𝐸𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐸𝑆 𝑎𝑛𝑑 𝑃𝑁𝐸𝑆). This is shown in Figure 2.12 and 

Figure 2.13. See Appendix C for data normality and outlier results. 
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Figure 2.12. Average and standard error of the Cross Approximate Entropy: 1st 10 regions 

 

Figure 2.13. Average and standard error of the Cross Approximate Entropy: 2nd 10 regions 

 

From Figures 2.12 and 2.13, average C-ApEn was greater for the epileptic group than the 

psychogenic group between all region pairs. However, significant differences in C-ApEn were 

not identified. The lowest average value of C-ApEn for the psychogenic group was between the 
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occipital/parietal region pair, while the lowest average value of C-ApEn for the epileptic group 

was between the frontal/occipital region pair. The largest average value of C-ApEn for the 

psychogenic group was between the central/temporal region pair, while the largest average value 

of C-ApEn for the epileptic group was between the parietal/temporal region pair. Average C-

ApEn did not vary greatly across region pairs. 

 

2.3.3.2   C-ApEn: Subjects 8 and 13 Removed 

 

Subjects 8 and 13 were consistent outliers in C-ApEn between region pairs and were thus 

removed from the analysis. The independent samples t-test was repeated to compare C-ApEn 

between epileptic and psychogenic groups (𝐻𝑜: 𝑁𝑜 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑟𝑛𝑐𝑒 𝑖𝑛 𝐶 −

𝐴𝑝𝐸𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐸𝑆 𝑎𝑛𝑑 𝑃𝑁𝐸𝑆). This is shown in Figure 2.14 and Figure 2.15. See Appendix C 

for data normality and outlier results. A * indicates significance for p<0.10 and ** indicates 

significance for p<0.05. See Appendix C for data normality and outlier results. 

 

Figure 2.14. Average and standard error of the Cross Approximate Entropy: 1st 10 regions – Subjects 8 

and 13 removed 
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Figure 2.15. Average and standard error of the Cross Approximate Entropy: 2nd 10 regions – Subjects 8 

and 13 removed 

 

Removal of subjects 8 and 13 from the analysis improved normality and decreased the 

presence of outliers in the C-ApEn datasets (Appendix C). From Figure 2.14 and Figure 2.15, the 

epileptic group continued to show larger C-ApEn between all region pairs. The independent 

samples t-test results found significant differences between epileptic and psychogenic groups for 

average C-ApEn between the frontal/parietal, parietal/occipital, and parietal/central region pairs 

at a significance level of 0.10, and for average C-ApEn between the parietal/frontal region pair at 

a significance level of 0.05.  
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2.3.3.3   C-ApEn Time Analysis between Parietal and Central Regions 

 

 

Figure 2.16. Cross Approximate Entropy between parietal and central regions over time using 5 second 

windows for ES and PNES groups 

 

Figure 2.16 shows C-ApEn values for 5 second intervals over all time for EEG recordings between 

the parietal and central brain region pair for one subject in the ES group and one subject in the 

PNES group. A large increase in C-ApEn towards the beginning of the EEG recording can be seen 

for both ES and PNES groups. C-ApEn remained lower for the PNES group over the full length 

of time in comparison to the ES group. Visual inspection of C-ApEn over time did not allow for 

obvious detection of seizure events.  
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2.4   Discussion 

 

PNES are seizures that appear similar in outward symptoms to epileptic seizures but lack 

the underlying neurological etiology [2]. Currently, differentiating between PNES and ES is 

done using video EEG to monitor the patient’s brain activity and outward physical behavior 

during a seizure. This method requires a specialist’s interpretation of the EEG signals to identify 

epileptic activity and relies on their ability to differentiate between non-normal EEG signals and 

signal artifacts due to external and physiological noise. Though PNES lack the neurological 

features of ES, visual assessment of EEG signals can often fall short, and patients who 

experience psychogenic seizure events are frequently misdiagnosed as “epileptic” and are treated 

ineffectively with AEDs before a proper diagnosis is made [2]-[5]. In fact, accurate diagnosis can 

take many years, resulting in stress and suffering for patients, caregivers, and physicians [4].  

 Various signal processing techniques, including time-frequency and information theoretic 

measures have been applied to EEG signals to detect, classify, and predict epileptic events [6]–

[14], [24]. However, few of these techniques have been implemented for the purpose of finding 

differences between EEG signals recorded from patients who experience PNES from patients 

who experience ES. Whether or not EEG signals from these two groups of patients can be 

effectively differentiated using signal processing techniques alone remains unclear. Identification 

of a biomarker to differentiate between PNES and ES using EEG analysis will facilitate the 

development of new diagnostic techniques and may improve delays in the diagnostic process for 

patients suffering from PNES. In this study, surface EEG recordings from 9 patients who 

experience PNES and 9 patients who experience ES were analyzed using MSC and C-ApEn as 

measures of neural connectivity between regions of the brain.  
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For the current study, both MSC and C-ApEn findings suggest differences in brain region 

connectivity in psychogenic patients versus epileptic patients. Previous studies have indicated 

that both groups show altered network connectivity among brain areas in comparison to healthy 

subjects, yet differences in network connectivity between psychogenic and epileptic groups were 

not as easily identified [4]. Additionally, a few studies have sought to find differences in 

connectivity within the neural frequency bands and have thus far been unsuccessful in 

differentiating between the two groups [4], [11].  

MSC results were isolated into the neural frequency bands for all region pairs to allow for 

evaluation of differences between ES and PNES. Average MSC for each region pair within each 

frequency band were analyzed using an independent samples t-test to compare epileptic and 

psychogenic groups. Higher frequency band activity has been implicated in epileptic disorders 

[11], [21]. Additionally, previous studies have sought to find differences in network connectivity 

within the higher frequency bands between epileptic and psychogenic groups with limited 

success [11], [21]. The results of this study did not identify differences in average coherence 

between the two groups for the alpha, beta, and gamma higher neural frequency bands. In 

contrast, significant differences were identified in the delta (0.5-4Hz) and theta (4-8Hz) lower 

frequency bands.  In the delta band, average coherence between the frontal/central regions, 

parietal/central regions, and the temporal/occipital regions were found to be significantly 

different between the epileptic and psychogenic groups, with the epileptic group having lower 

average coherence than the psychogenic group. In the theta band, average coherence between the 

temporal/occipital regions was found to be significantly different between the epileptic and 

psychogenic groups, with the epileptic group having lower average coherence than the 

psychogenic group.  
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Directed C-ApEn between all brain regions from epileptic and psychogenic groups were 

compared using independent samples t-tests. Initial analysis of C-ApEn results revealed no 

significant differences between the two groups. Two subjects were identified as majority outliers 

in the C-ApEn datasets. These subjects were removed from the C-ApEn datasets and the 

analyses were repeated between groups. The results of the independent samples t-test revealed 

significant differences in average C-ApEn for the frontal/parietal, parietal/frontal, 

parietal/occipital, and parietal/central region pairs between the two groups with epileptic group 

having higher average C-ApEn than the psychogenic group. 

Studies have indicated that patients who experience PNES show elevated connectivity 

between areas involved in emotional control and movement [22], [23]. The frontal and temporal 

lobes of the brain are largely responsible for emotional/voluntary movement and behavior, 

respectively [24]. In epileptic patients, studies have found that changes in connectivity are most 

often observed in the temporal and limbic lobes [25]. The present MSC findings indicate 

stronger connectivity in both the frontal and temporal regions between select region pairs for the 

PNES group in comparison to the ES group. C-ApEn findings indicate stronger connectivity in 

the frontal and parietal regions between select regions pairs for the PNES group in comparison to 

ES group. Furthermore, the most significant difference found for C-ApEn was between the 

frontal and parietal regions in the direction from parietal to frontal. This suggests that the 

directionality of information flow may be important in distinguishing the two groups. Limbic 

lobe connectivity was not evaluated in the present study due to the superficial nature of surface 

EEG measurements.  

Analysis of MSC and C-ApEn revealed differences between epileptic and psychogenic 

groups. Both measurements found connectivity between the parietal and central regions to be 
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significantly different between the two groups. Previous research has found that there are 

changes in connectivity before and after seizure events in epileptic patients [36]. An additional 

analysis of C-ApEn over time was implemented between the parietal and central regions for one 

subject from each group. The time analysis revealed C-ApEn between the parietal/central region 

pair was lower in the PNES group over all time. This result agreed with the single value C-ApEn 

analysis. Visual inspection of how C-ApEn changed over time did not reveal obvious patterns to 

indicate when seizure events occurred and therefore, connectivity changes during seizure events 

were not ascertained. This suggests a more in depth analysis of C-ApEn over time is required to 

isolate seizure events and evaluate connectivity changes. Interestingly, C-ApEn between the 

parietal/central region pair showed a large increase following the beginning of the EEG 

recordings for both PNES and ES subjects. C-ApEn values held more steadily for the remainder 

of the EEG recording. This finding highlights the importance of the additional time analysis for 

C-ApEn to observe connectivity changes over time and to prevent loss of relevant information.   

MSC and C-ApEn significant findings did not agree for the two measurements for all 

other region comparisons. This could be explained in that MSC and C-ApEn are inherently 

different measures. MSC is a time-frequency measure of the linearity of phase relationship 

between two signals, while C-ApEn is a non-linear time domain measure of signal complexity. 

The computation time of the C-ApEn algorithm is extremely long for large data sets. C-ApEn 

provided a much less detailed analysis of neural connectivity in comparison to the additional 

frequency analysis provided by MSC, which is less computationally heavy. However, C-ApEn 

does provide the benefit of directionality, which MSC cannot provide.  

 This study was limited by a small sample size of epileptic and psychogenic patient EEG 

recordings. A larger sample size would likely improve the normality of the MSC and C-ApEn 
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results and allow for the ability to validate the present MSC and C-ApEn findings. The EEG data 

used for this study had limited information concerning when signal events occurred. The analysis 

would benefit from more a more detailed description of the EEG signals from each patient 

including time markers for when events occurred (psychogenic, epileptic, signal artifacts, etc.). 

Additionally, recordings from each patient were highly variable. Some patients were recorded 

during psychogenic or epileptic events, while some patients were recorded during normal 

wakefulness or sleep. A more uniform set of data would reduce the presence of outliers in the 

MSC and C-ApEn results and allow for a more robust comparison between the two groups. 

Future studies should seek to verify the findings of this study through a more in depth 

connectivity analysis, particularly in the delta and theta frequency bands and between the region 

pairs found to be significant for MSC. A C-ApEn analysis should be implemented over time to 

investigate how connectivity changes between brain regions throughout the EEG recordings. 

Though MSC and C-ApEn are well established connectivity measures, additional connectivity 

measures would benefit this study. EEG recording conditions should be more highly controlled 

and the sample size of the data should be increased. Additionally, a set of normal EEG 

recordings from healthy subjects implemented as a control would be useful to establish how 

connectivity in epileptic and psychogenic patients differs from connectivity in normal patients.  

 

2.5   Conclusion 

 

In this study, surface EEG signals from two patient groups, epileptic and psychogenic, 

were analyzed using C-ApEn to investigate differences in neural connectivity between regions of 

the brain (frontal, parietal, temporal, occipital, and central), and MSC to investigate differences 

in neural connectivity between regions of the brain within the neural frequency bands (delta: 0.5-
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4Hz, theta: 4-8Hz, alpha: 8-13Hz, beta: 13-30 Hz, and gamma: 30-100Hz). Although previous 

studies reported inconclusive findings regarding neural connectivity differences between 

epileptic and psychogenic groups, this study identified significant differences. For both C-ApEn 

and MSC measures, epileptic and psychogenic patient groups were compared using an 

independent samples t-test. The statistical analysis concluded that average C-ApEn was greater, 

indicating lower connectivity, in the epileptic group between the frontal/parietal, parietal/frontal, 

parietal/occipital, and parietal/central region pairs, and that average MSC was lower, indicating 

lower connectivity, in the epileptic group in the delta band (frontal/central, parietal/central, and 

temporal/occipital) and the theta band (temporal/occipital). Both MSC and C-ApEn found 

connectivity between the parietal/central regions to be significantly lower for the epileptic group.  

The current study would benefit from a larger sample size and a more well defined 

recording protocol to reduce variability within groups. Future research should consider 

investigating neural connectivity differences between groups using additional analysis 

techniques with a focus on the significant interactions identified in this study. The results of this 

study suggest potential areas of brain region interactions that could act as biomarkers for PNES 

and ES differentiation and may be useful during the diagnostic phase. 
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Chapter 3.   Extended Review of Literature and Extended Methodology 

 

 

3.1   Extended Review of Literature 

3.1.1   Epileptic Seizures 

In general, seizures are referred to as paroxysmal events due to their involuntary and abrupt 

nature. The term epileptic seizure has been defined by the International League Against Epilepsy 

(ILAE) as “a transient episode of signs/or symptoms due to abnormal or synchronous neuronal 

activity in the brain” [1], [17]. The signs and symptoms exhibited during an epileptic seizure are 

highly variable and may include impaired or lost consciousness and abnormal events in some or 

all the sensory, motor, autonomic, or psychic modalities. These changes can be subtle (e.g. minor 

sensations) or severe (e.g. large involuntary motor movements) in nature [24]-[28].  

Epileptic seizures occur in many patients suffering from a range of disorders associated 

with seizures. Patients diagnosed with epilepsy constitute the largest subgroup who experience 

epileptic seizures. A diagnosis of epilepsy requires recurrent and unprovoked epileptic seizure 

events over a period greater than 24 hours and/or an epilepsy related syndrome [17], [27]. In 

epilepsy patients, the causes of epileptic seizures have been separated into six distinct categories: 

(1) structural – an abnormality in the brain anatomy, (2) genetic – family history or genetic 

variants, (3) infectious – chronic or resolved infection, specific to patients with epilepsy, (4) 

metabolic – metabolic imbalance, (5) immune – auto-immune disease, and (6) unknown – cause 

is uncertain [24]. Additional forms of epileptic seizures are defined for patients who do not fit 

into the epilepsy cohort. These include solitary unprovoked epileptic seizures, febrile seizures, 

neonatal seizures, and provoked or acute symptomatic seizures [27]. Epileptic seizures that do 

not originate from epilepsy are summarized in Table 3.1.  
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Table 3.1. Additional Types of Epileptic Seizure [27] 

 

Seizure Type Description 

Solitary unprovoked epileptic seizures Seizure/s occurring within a 24 hour period or a 

single seizure event. Seizure events are isolated; 
they do not reoccur.  

 
Febrile seizures Seizures occurring in infants and young children. 

Rectal temperatures measure at least 101F. There 

is no history of previous unprovoked seizures and 

no comorbid central nervous system infection. 
 

Neonatal seizures Seizures occurring in infants who are less than 28 

days of age. 

 
Provoked or acute symptomatic seizures Seizures associated with an acute, systemic, or 

toxic factor affecting the central nervous system. 

This includes “(infection, stroke, cranial trauma, 
intracerebral hemorrhage, 

or acute alcohol intoxication or withdrawal”. 

These seizures are not associated with long term 

abnormalities in the brain.  

 

Basic classification of epileptic seizures is centered on seizure onset which refers to the 

originating location in the brain. Seizure onsets can be focal, generalized, or unknown. A focal 

onset refers to a seizure that originated from a localized region in the brain. A generalized onset 

involves both the right and left hemispheres of the brain. An unknown onset means the region of 

seizure origination is unknown [17]. Seizures can be further classified according to the expanded 

classification defined by the ILAE (Figure 3.1).  
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Figure 3.1. ILAE Seizure Classification [17] 

 

The ILAE seizure classification provides detailed seizure categories within the type of 

seizure onset. Focal onsets are first classified with reference to awareness, followed by motor vs. 

non-motor presentation. Additionally, a focal onset seizure that shifts to a generalized seizure is 

labeled as focal to bilateral tonic-clonic. Generalized and unknown onset seizures are evaluated 

for motor vs. non-motor presentation, with unknown seizures sometimes being categorized as 

unclassified [17]. The level of detail for seizure classification is determined by the amount of 

available information pertaining to the seizure event. If a classification level is unknown it is 

omitted from the seizure type label.  

3.1.2   Psychogenic Nonepileptic Seizures 

Psychogenic nonepileptic seizures (PNES) are paroxysmal events that resemble epileptic 

seizures in movements, sensations, and/or experiences but lack clinical evidence for epilepsy [3], 

[5]. As the term “psychogenic” implies, psychogenic nonepileptic seizures are psychological in 
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origin and lack the characteristic epileptic discharges that are observed during epileptic seizures. 

The psychological nature of PNES is the primary difference between PNES,  ES, and other 

nonepileptic events [29]. PNES have been diagnostically classified as dissociative or somatoform 

disorders and are thought to be a stress response that can be physical, emotional, or social in 

nature [3], [10]. Brown and Reuber summarized four models to define the origin of psychogenic 

seizure disorders. The models classify PNES as a psychological response caused by (1) a 

dissociative event, (2)  a hard-wired behavioral tendency or tendencies, (3) a somatoform event, 

or (4) a learned behavior [30]. The four models are described in Table 3.2.  

 

Table 3.2. The Four Models of PNES Disorders [30] 

Model Description 

 

Dissociative Response 

A dissociation or separation of memories and/or 

mental function. This can be due to previously 

traumatic events that reoccur for the patient as 
sensory and motor flashbacks. This suggests a 

close link to post traumatic stress disorder 

(PTSD). 
 

 

Hard-wired Response 

An innate behavioral tendency that results as a 

response to stress or a threat. This is thought to be 

a protective mechanism and/or serve additional 
biologic functions. This response is also linked to 

PTSD. The occurrence of PNES is proposed as an 

altered state that shares similarities with a panic 
attack.  

 
 

Somatoform Response 

A physical manifestation of emotional distress 
without underlying physical or neurological 

cause. This may be a defensive response to protect 

the patient from acknowledging emotional causes 

while allowing for an outlet of emotional energy.  
The patient may be unable to recognize their 

emotional state. 

 
 

Learned Behavioral Response 

A result of conditioning through positive and/or 

negative reinforcement. This has been observed in 

households with epilepsy sufferers to which other 
family members may “learn” the seizure behavior.  
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The four models described in Table 3.2 attempt to describe the triggers behind PNES, but 

they fail to account for all cases. Brown and Reuber proposed a singular model called the 

integrated cognitive model (ICM). This model attempts to universally define the mechanisms 

behind PNES [31]. In the ICM, PNES are described as an involuntary and automatic response to 

some sort of trigger where the development of the condition is based on the patient’s life 

experiences. The ICM accounts for differences in PNES between individuals and cultures which 

is expected due to variation in life events and experiences.  

Presentation of PNES typically occurs in patients during early adulthood, but it can also 

occur in much younger and older patients [2]. Patients with PNES show variation in physical and 

mental health as well as their responsiveness to treatments [30]. Many patients who suffer from 

PNES are misdiagnosed and treated for epileptic seizures [3], [5]. The treatment for epileptic 

seizures includes prescription of an antiepileptic drug (AED). AEDs have not been effective in 

treating PNES and it has been found that they may worsen the symptoms in patients with PNES. 

It has been suggested that treatment of PNES should include psychiatric/psychological 

intervention. Studies have shown that many patients who experience PNES also suffer from 

additional psychiatric conditions such as depression, anxiety, posttraumatic stress, or other 

somatoform/dissociative disorders [3].  

 The signs and symptoms of PNES are widely variable from patient to patient. In addition, 

the symptoms of PNES and ES share many of the same physical characteristics [2]. Nonetheless, 

these signs and symptoms have been heavily studied to allow for their distinction. The physical 

differences between the two seizure types are presented in Figure 3.2.  
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Figure 3.2. Physical Differences between Psychogenic Nonepileptic and Epileptic Seizures [29] 

 

Some of the hallmark features of PNES include “gradual onset or termination of seizure, 

pseudosleep, discontinuous, irregular, or asynchronous activity (e.g. side-to-side head 

movement, pelvic thrusting, opisthotonic posturing, stuttering, and weeping), ictal eye closure 

with extended unresponsiveness, and postictal whispering”[3], [29]. While there are differences 

in the physical manifestation between the two seizure types, there is a large amount of variation. 

This variation in PNES symptoms can make diagnosis more challenging for less experienced 

clinicians. Additionally, it has been noted that symptoms may vary throughout the course of the 

patient’s lifetime as the underlying mechanism causing PNES changes and that patients who 

suffer from PNES may also suffer from ES [30], [32].   

The ability to effectively diagnose patients with PNES requires an in depth evaluation of 

the patient’s symptoms, characteristics, and their seizure events. The most success has been 
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found with using video EEG which allows for monitoring of both the physical and neurological 

side effects that occur during a seizure. Patients with an increased frequency of seizure episodes 

can be monitored using video EEG recordings to capture the physical and electrical activities 

during an event. Close observation of the patient through video EEG enables clinicians to 

confirm the absence of ictal or post-ictal activity. This means that if the patient presents with the 

signs and symptoms of a seizure in the absence of epileptic activity and evidence of a 

psychological trigger, a psychogenic diagnosis will be given.  

Aside from patients who experience a high frequency of PNES, other patients may not be 

as well suited for video EEG monitoring. In this scenario clinicians must rely on patient and/or 

caregiver accounts of the event, physical symptoms, and surface EEG recordings alone. Current 

suggestions on increasing the robustness of the diagnostic process include incorporating 

psychometric testing, automated classifiers, and neuroimaging in addition to video EEG [4], 

[33], [34]. Combinational approaches for PNES and ES differentiation are helpful but may create 

additional work for clinicians and further extend the diagnostic process. Automated classification 

methods could prove to be the most promising due to their potential for decreasing diagnostic 

delays and error. However automated methods have thus far been lacking in their effectiveness. 

This suggests a need for more accurate automated method/s to differentiate between PNES and 

ES.  

3.1.3   Electroencephalogram 

Electroencephalography (EEG) is a measure of bioelectric potentials that are representative 

of the electrical activity in the brain [24], [35]. EEG measurements can be taken via the scalp, the 

cortical surface, or deeper into the neural tissue. These recordings are referred to as surface EEG, 

electrocorticogram (ECoG), and depth recording, respectively [35]. The surface EEG is the least 
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invasive method for recording the brain’s electrical activity. Signals recorded at the skin’s 

surface propagate from the cerebral cortex to the scalp and are produced by the summation of 

low frequency inhibitory and excitatory postsynaptic potentials (IPSPs and EPSPs) from many 

active neurons. The cerebral cortex is made up of neural tissue and exists at the outermost layer 

of the cerebrum. The cerebrum is responsible for higher order processing of information 

associated with sensory and motor function, thinking, decision making, and emotion [24]. The 

cerebrum is divided into two hemispheres, left and right, which are further divided into four 

lobes: frontal, parietal, temporal, and occipital. Table 3.3 details the processing functions that 

correspond to each lobe of the brain. 

 

Table 3.3. Functions of the Lobes of the Brain [24] 

 

Lobe 

 

 

Function 

 

Frontal 

Personality, emotions, problem solving, motor 

development, reasoning, planning, parts of speech 
and movement 

 

Parietal Sensation, recognition, perception of stimuli, 
orientation and movement 

 

Temporal Recognition of auditory stimuli, speech, 

perception, behavior, and memory 
 

Occipital Visual processing 

 

 

The standard 10-20 international system is the typical protocol for electrode placement 

and makes use of the skulls anatomical features for reference [35]. The primary features used for 

electrode placement are called the nasion and inion. The nasion is level with the eyes and lies 

between the nose and forehead and the inion is a bony protuberance at the base of the skull [24]  
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The ‘10-20’ values have specific meaning which refer to the physical distances between adjacent 

electrodes. These distances are either 10% or 20% of the length from the front to back or right to 

left of the skull [24]. Figure 3.3 shows the standard 10-20 electrode placement with the nasion 

and inion labeled for reference.  

 

Figure 3.3. Standard 10-20 Electrode Placement [24] 

 

Electrodes are labeled as F (frontal), T (temporal), C (central), P (parietal), and O 

(occipital). The frontal, temporal, parietal, and occipital labels correspond to the lobes of the 

brain while the central label corresponds to the coronal plane. A subscript Z (e.g. FZ) indicates an 

electrode placed along the midline or sagittal plane. Electrodes with the label A are reference 

electrodes placed on the mastoid process behind the ears. Numbering of the electrodes is specific 

to hemisphere with odd numbering on the left hemisphere and even numbering on the right 

hemisphere [24]. The labeling of the electrodes using the standard 10-20 international system 

allows for measurement of not only the electrical activity of the brain as a whole, but also of the 

anatomical regions of the brain as surface EEG signals differ based on their placement and are 

closely connected to the events within the cerebral cortex [24], [35].  
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 Potentials recorded from surface EEG electrodes result from countless numbers of active 

neurons and exhibit oscillatory behavior that is often random and aperiodic [24]. The complexity 

of surface EEG signals like many other bio-signals lends itself to frequency analysis to assess 

neural function and detect abnormalities in both clinical and research settings. There are five 

well known frequency bands associated with neural activity in the human brain: delta, theta, 

alpha, beta, and gamma. Figure 3.4 shows sample EEG waveforms at these frequency bands and 

the associated cognitive awareness and function.  

 

Figure 3.4. EEG Brain Wave Frequency Bands [24] 

 

Normal EEG signals show variation in frequency and amplitude upon changes in cerebral 

activity [24], [35].  Overall, increases in frequency are associated with increases in brain activity. 

Similarly, periods of increased mental activity are associated with decreased signal amplitude 

because activity tends to become less synchronized [35].  

Apart from measurement of normal signals, the EEG measurement is one of the main 

tools used to record abnormal signals and has been central to the detection, monitoring, and 
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diagnosis of epileptic seizure disorders. Deviations from typical EEG signals indicate abnormal 

neural activity, such as the uncontrolled hypersynchronous activity that occurs in the epileptic 

central nervous system [24], [28]. A change from normal brain activity to the onset of a seizure 

has been frequently characterized by an abrupt change in EEG signal frequency and amplitude, 

often in the alpha wave frequency band [24]. Activity in the higher frequency bands and rapid 

spiking sharp waves have also been associated with epileptic EEG recordings [36], [37].  

Interpretation of EEG by electroencephalographers can be time consuming and prone to 

error and has been deemed as an unsatisfactory method due to a lack of standard assessment 

criteria [24], [37], [38]. It has been suggested that automated systems would be more suitable to 

the task of EEG evaluation. Many automated algorithms that have been developed in research to 

analyze EEG data have made us of parametric, nonparametric, time-frequency, and eigenvector 

techniques to predict, detect, and classify seizure events in epileptic patients [6]–[14], [24], 

although few of these techniques have been directly applied to the differentiation of neurogenic 

from psychogenic seizures. Furthermore, many of these techniques have yet to be successfully 

integrated into the clinical setting [24], [37], suggesting a need for further algorithm 

development and a well-defined path for clinical implementation. 

3.1.4  Time Frequency Analysis and Coherence 

Time frequency analysis can provide more information than independent analysis alone 

because it allows for the simultaneous study of a signals time and frequency content. This type of 

analysis is especially useful in the investigation of nonstationary processes, such as those of 

biomedical signals, which are physiological in nature and tend to change with time [38]. 

Common methods used for time frequency analysis include the periodogram spectrogram, Welch 

spectrogram, and coherence spectrogram [38]. The spectrogram is a time frequency distribution 
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which allows for visual interpretation of frequency and time information. Knowledge obtained 

through time frequency analysis has been used to gain understanding about physiological 

processes and mechanisms, to detect abnormalities, and to understand relationships between 

different biomedical signals [19], [39]-[42]. Among the time frequency analysis methods, 

magnitude squared coherence (MSC) is an especially popular measurement for evaluation of 

functional neural connectivity. Previous studies have indicated its potential usefulness in the 

analysis of EEG signals to detect and classify epileptic and non-epileptic seizure events [7], [12], 

[13], [42]. 

MSC measures the linear relationship between two time series as a function of frequency. 

In other words, MSC provides a measure of the similarities in the frequency content of two 

signals. MSC is effective in the analysis of nonstationary signals because it involves the 

application of a window to the data. In this way, the window is chosen at a length that allows for 

the assumption of stationarity of the signal. This also allows for manipulation of time and 

frequency resolution. Shorter windows improve time resolution, while longer windows improve 

frequency resolution. Therefore, the window length must also be chosen to create a balance that 

maintains both the frequency and time information [38].  

3.1.5  Approximate Entropy and Cross Approximate Entropy 

Approximate entropy (ApEn) provides an information theoretic measure that quantifies 

the regularity in signals. ApEn was developed by Pincus to evaluate complexity in biosignals 

arising from both stochastic and deterministic chaotic systems and has proven to be useful in 

analysis of endocrine, ECG, EEG, and respiration signals [26], [21], [43], [44]. ApEn has four 

features that make it well suited for biosignal processing: (1) the ability to quantify complexity 

for short lengths of data, (2) resistance to outliers, (3) resistance to noise, and (4) application to 
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both chaotic and random signals and to their combination [26]. These features make ApEn 

especially useful for processing of surface EEG signals that arise from complex neurological 

processes and are frequently contaminated with noise. It should be noted that ApEn is a biased 

statistic. This bias is more prominent for shorter lengths of data and therefore care must be taken 

to ensure that all data being compared is of the same length N [43]. As the length of the data set 

increases, the bias of the statistic also decreases.  

 ApEn is a measure of complexity within a particular signal. Cross approximate entropy 

(C-ApEn) was developed from ApEn as a measure of complexity between two signals. This 

allows for assessment of independence between signals and more importantly allows for 

comparison of signals that could arise from processes similar yet distinct in nature or different 

processes altogether [26]. In this way, C-ApEn provides insight into the relationship between 

signals from which inter-signal connectivity can be inferred.  

The features of ApEn that make it useful for biosignal processing also apply to C-ApEn.  

Even more, application of C-ApEn has the potential to provide more information that ApEn 

alone, however its high computational cost has made its implementation less popular in the 

research community [45]. In any case, previous studies have implemented C-ApEn as a measure 

of neural connectivity to identify biomarkers in patients with Alzheimer’s disease, and to 

evaluate female hormone levels [15]-[16].  
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3.2   Extended Methodology 

3.2.1   Subject Data 

Surface EEG recordings from 18 subjects were provided to Grand Valley State 

University by the Spectrum Health Office of Clinical Research in conjunction with the Epilepsy 

Monitoring Unit. Subjects were categorized into two groups based on the incidence of 

psychogenic or epileptic seizures: 0 (control or psychogenic) or 1 (epileptic). The surface EEG 

recordings for all patients had a sampling rate of 200 Hz. Length of recording varied from 8.7 

minutes to 10.5 minutes.  Subject numbers, grouping, and EEG interpretations were provided 

along with the EEG data . EEG interpretation notes gave limited information about the subject’s 

state during recording (sleep or wakefulness), the presence of seizure activity (psychogenic or 

epileptic) and artifacts, as well as the suspected type of epilepsy for subjects in the epileptic 

group. The timing of events was not specified in the patient notes. The EEG interpretations 

indicate that the surface EEG data from all subjects are representative of a combination of both 

normal EEG signals and non-normal (psychogenic or epileptiform) EEG signals. Table 3.4 

shows the notes provided for each subject.  
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Table 3.4. Subject Classification and EEG Interpretations 

 

 

Subject 

ID 

Epileptic or Control 

Group 

     0 =Control 

    1 = Epileptic                              

 

 

EEG Interpretation 

 

1 

 

0 

 

normal wakefulness, muscle artifact, eye movement artifact, photic 

stimulation with normal posterior driving response 

 
 

 

2 

 
 

 

0 

 

normal stage II sleep with a single, brief arousal (arousal- 

associated muscle artifact during the arousal); at other times in the 

record, the patient has temporal lobe slowing, but this slowing was 

not evident in this sleep sample. 

 

3 

 

0 

 

normal stage II sleep with minimal muscle artifact 

 

4 

 

0 

 

normal wakefulness with one brief psychogenic nonepileptic 

convulsive event with muscle and movement artifact 

 

5 

 

0 

normal stage II sleep with brief arousal (arousal-associated muscle 

artifact during the arousal). Has left temporoparietal slowing in 

wakefulness 

 

6 

 

0 
normal wakefulness with muscle artifact, photic stimulation, and 

hyperventilation 

 

7 

 

0 

 

wakefulness with left temporal slow waves, also muscle artifact 

 

8 

 

0 
 

normal wakefulness with psychogenic event and copious muscle artifact 

 
9 

 
0 normal wakefulness, photic stimulation, hyperventilation with 

prominent normal hyperventilation response 

 

 

10 

 

            1 

left temporal spike-wave and sharp and slow wave discharges; 

otherwise unremarkable wakefulness; [suspected left temporal    lobe 

epilepsy] 

 

 

11 

 

 

    1 

 

normal wakefulness except for a brief burst of nonspecific, sharply-

contoured frontal theta; eyes open throughout; [poorly lateralized, 

poorly, poorly localized focal epilepsy] 
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12 

 

     1 

 

stage II sleep, REM sleep, no epileptiform activity or other 

abnormality; [patient does have focal, extratemporal epilepsy] 

 

 

  13 

 

 

             1 

 

wakefulness and light drowsiness, largely unremarkable except for 

frequent left temporal slow waves and occasional left temporal 

sharp waves; [focal epilepsy of left hemispheric origin] 

 

14 

 

             1 

stage II sleep with right frontotemporal spikes and sharp waves as well 

as right anterior temporal slow waves; [right temporal lobe epilepsy] 

 

 

15 

 

 

             1 

stage II sleep with frequent interictal discharges (left 

centroparietal spikes and sharp waves > left anterior temporal sharp 

waves > left occipital spikes) and left > right hemispheric slow waves; 

[left temporoparietal epilepsy] 

 

 

16 

 

 

             1 

 

wakefulness with right greater than left temporal lobe slow 

waves, no epileptiform activity; [prior left temporal lobe 

epilepsy, rare seizures following left temporal lobe surgery] 

 

17 

 

             1 

 

stage II sleep, midline central spike-wave discharge; [focal 

epilepsy or right posterior quadrant origin] 

 

18 

 

             1 

 

stage II sleep, right hemispheric slowing; [independent right and left 

hemispheric focal seizures] 

 

3.2.2   Data Analysis 

All surface EEG signals were analyzed using non-parametric information theoretic and 

time-frequency measures to assess network connectivity between regions of the brain using 

MATLAB 2019a. Five brain regions were selected for analysis: (1) Frontal, (2) Parietal, (3) 

Temporal, and (4) Occipital corresponding to the lobes of the brain, as well as a (5) Central 

region that corresponds to the positional placement of recording electrodes along the coronal 

plane. A total of 10 pairs of regions were evaluated. The region pairs are shown in Table 3.5. 
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Table 3.5. Region Pairs of Interest 

Region Number Region Pair 

1 Frontal / Parietal 

2 Frontal / Temporal 

3 Frontal / Occipital 

4 Frontal / Central 

5 Parietal / Temporal 

6 Parietal / Occipital 

7 Parietal / Central 

8 Temporal / Occipital 

9 Temporal / Central 

10 Occipital / Central 

 

Frequency analysis further allowed for evaluation of connectivity between brain regions 

in the neural frequency bands: Delta (0.5 – 4 Hz), Theta (4-8 Hz), Alpha (8-13 Hz), Beta(13-30 

Hz), and Gamma (30-100 Hz). 

3.2.2.1   Preprocessing 

 

EEG signals often contain artifacts from many sources including powerline interference, 

blinking, muscle contraction, and relative displacement between electrodes and patients. One 

must be careful in the steps taken to remove this noise as to not compromise the integrity of the 

EEG signal because the energy of such noise often spans the full range of the neural frequency 

bands (0.5-100Hz) [6].  Powerline interference occurs around 60 Hz and can be easily identified 

in the signal and removed via filtering. A 2nd order Butterworth notch filter at 60 Hz was applied 

to the raw surface EEG signals to remove powerline interference. Referring to Table 3.4, the 
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EEG interpretation notes indicated the presence of muscle artifact noise for many of the subjects. 

One way to mediate the effect of muscle artifact is through reference averaging to reduce the 

impact of any channel electrodes carrying excess noise. In this way reference averaging also 

helps to minimize artifacts from relative displacement between electrodes and patients. A 

reference average was applied by subtracting the average of all the EEG electrodes from the 

EEG signal for all subject data. 

3.2.2.2   Brain Regions of Interest 

 

The surface EEG data consisted of 23 recording channels based on the international 

standard 10-20 protocol for EEG electrode placement. EEG signal channels were extracted and 

grouped according to Table 3.6. The EEG signals were averaged within each group to obtain a 

single representative time series for each brain region.  

 

Table 3.6. EEG Signal Channels Grouping for each Brain Region 

Brain Region EEG Signal Channels 

Frontal 'Fp1' 'Fp2' 'F3' 'F4' 'F7' 'F8' 

Parietal 'P3' 'P4' 'P7' 'P8' 

Temporal 'T7' 'T8' 'T1' 'T2' 

Occipital 'O1' 'O2' 

Central 'C3' 'C4' 
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3.2.2.3   Magnitude Squared Coherence  

 

Magnitude squared coherence (MSC) is a technique that measures the linear relationship 

between two time series as a function of frequency. MSC is often calculated as a function of 

frequency alone, 𝑀𝑆𝐶(𝑓), but can also be calculated more robustly as a function of both time 

and frequency, 𝑀𝑆𝐶(𝑛, 𝑘). The process for calculating 𝑀𝑆𝐶(𝑛, 𝑘) begins with computing the 

short term minimum bias eigentransform (STET) defined by 

 

𝑋𝑙[𝑛, 𝑘] =  ∑ 𝑥 [𝑛 + 𝑚 −
𝑀

2
] 𝑉𝑙[𝑚]𝑒−𝑗2𝜋𝑚𝑘/𝑀𝑀−1

𝑚=0                   (3.1) 

 

where 𝑥[𝑛 + 𝑚 − 𝑀/2] is a the input signal to be evaluated at 𝑛 time points with percent 

overlap of 𝑀/2, 𝑉𝑙[𝑚] is spheroidal sequence of 𝑙 mutli-taper windows of length 𝑀, and 𝑘 is the 

frequency index. The STET is computed for both input time series signals to obtain 𝑋𝑙[𝑛, 𝑘]and 

𝑌𝑙[𝑛, 𝑘]. The auto power spectra and the cross power spectrum are then computed using the 

results of the STET: 

𝑆𝑥𝑥 =  | ∑ 𝑋𝑙[𝑛, 𝑘]|2𝐿−1
𝑙=0                         (3.2) 

𝑆𝑦𝑦 =  | ∑ 𝑌𝑙[𝑛, 𝑘]|2𝐿−1
𝑙=0                          (3.3) 

𝑆𝑥𝑦 =  ∑ 𝑋𝑙[𝑛, 𝑘]𝑌𝑙
∗[𝑛, 𝑘]𝐿−1

𝑙=0                   (3.4) 

 

𝑀𝑆𝐶(𝑛, 𝑘) can then be computed as  

𝑀𝑆𝐶(𝑛, 𝑘) =  
|𝑆𝑥𝑦(𝑛,𝑘)|2

𝑆𝑥𝑥(𝑛,𝑘)𝑆𝑦𝑦(𝑛,𝑘)
             (3.5) 
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MSC provides frequency correlation results between 0 and 1, revealing the similarity 

between the frequency content in two signals over time [38]. An MSC value of 0 indicates a non-

linear relationship while an MSC value of 1 indicates an ideal linear relationship. The MSC 

results can be assessed visually using a coherence spectrogram.   

An algorithm to compute 𝑀𝑆𝐶(𝑛, 𝑘) was developed in MATLAB 2019a to evaluate 

neural connectivity between brain regions in the neural frequency bands. A spheroidal sequence 

of L = 7 mutli-taper windows with M = 1200 was generated using MATLAB’s discrete prolate 

spheroidal (Slepian) sequences (DPSS) function. Since fs = 200 Hz, the window length, M, was 

chosen to achieve a time resolution of 6 seconds and a frequency resolution of 0.167 Hz. The 

number of FFT points was chosen as 1200 to match the window length. The time increment was 

set to 600 for 50% overlap.  

 For all subjects, coherence spectrograms were obtained for each region pair spanning the 

neural frequency bands for the full length of recording. The region pair MSC values were further 

manipulated to obtain average MSC time series for each of the neural frequency bands. Finally, 

the time series data was averaged once more to obtain a single coherence value for each region in 

each neural frequency band. Figure 3.5 illustrates the process that was taken to obtain the final 

MSC averages. 

 
Figure 3.5. Flow Diagram of MSC Average Calculations 
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3.2.2.4   Cross Approximate Entropy 

 

Cross approximate entropy (𝐶 − 𝐴𝑝𝐸𝑛) is a non-linear directed measure that describes 

the pattern complexity or similarity between two times series [26]. To understand 𝐶 − 𝐴𝑝𝐸𝑛 it is 

helpful to first understand the approximate entropy (𝐴𝑝𝐸𝑛) algorithm, which is used to quantify 

the complexity of a single time series. 𝐴𝑝𝐸𝑛 was first proposed by Pincus [20] as a time analysis 

technique for bio-signal processing. Fusheng et al. provide a detailed definition and 

interpretation of 𝐴𝑝𝐸𝑛 and 𝐶 − 𝐴𝑝𝐸𝑛 [26] that is summarized below.  

 As previously stated, 𝐴𝑝𝐸𝑛 is a statistic that measures the complexity of a single time 

series 𝑥(𝑛) defined by  

 

𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =  𝛷𝑚(𝑟) −  𝛷𝑚+1(𝑟)  (3.6) 

 

where 𝑚 is the dimension that describes the length of each data block to be compared, 𝑟 is a 

threshold that acts as a noise filter, and 𝑁 is the total length of the data. The computation of 

𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁)  begins with the definition of the values 𝑚 and 𝑟. As suggested by the literature 

[20], the value of 𝑚 is usually chosen as 2 and the value of 𝑟 is taken as 0.2𝑆𝐷𝑥 where 

𝑆𝐷𝑥  is the standard deviation of the data 𝑥(𝑛). Following, a series of computations are 

performed at dimension 𝑚 and then repeated for 𝑚 + 1. The steps of computation and their 

meaning are described below.  

 

Step 1.   Create vectors of length 𝑚: 

 

𝑋(𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 1), … , 𝑥(𝑖 + 𝑚 − 1),       𝑖 = 1, 𝑁 − 𝑚 + 1  (3.7) 
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For 𝑚 = 2,  𝑋(𝑖) is a line segment or two-point pattern, [𝑥(𝑖)  𝑥(𝑖 + 1)], that joins every two 

consecutive data points, and for 𝑚 = 3,  𝑋(𝑖) is a line segment or three-point pattern, 

[𝑥(𝑖) 𝑥(𝑖 + 1) 𝑥(𝑖 + 2], that joins every three consecutive data points. 

 

Step 2.   Define the distance as the absolute maximum difference between 𝑋(𝑖) and 𝑋(𝑗): 

 

𝑑[𝑋(𝑖)  𝑋(𝑗)] =  𝑚𝑎𝑥𝑘=0,𝑚−1[|𝑥(𝑖 + 𝑘) − 𝑥(𝑗 + 𝑘)|]  (3.8) 

 

Step 3.  For a given 𝑋(𝑖), find the number of distances, 𝑑[𝑋(𝑖)  𝑋(𝑗)], (𝑗 = 1, 𝑁 − 𝑚 + 1) that 

are ≤ 𝑟: 

𝑁𝑚(𝑖) = # 𝑜𝑓 𝑑[𝑋(𝑖)  𝑋(𝑗)]  ≤ 𝑟  (3.9) 

 

The meaning of 𝑁𝑚(𝑖) is then the total number of 𝑚-point patterns formed by all consecutive 

data points in the time series that are close to 𝑋(𝑖) within the threshold tolerance of ±𝑟. 

 

Step 4.   Compute the ratio of 𝑁𝑚(𝑖) to the total number of all 𝑚-point patterns, (𝑁 − 𝑚 + 1): 

 

𝐶𝑟
𝑚(𝑖) =  

𝑁𝑚(𝑖)

𝑁−𝑚+1
  (3.10) 

 

The ratio, 𝐶𝑟
𝑚(𝑖), defines the frequency of occurrence of 𝑚-point patterns that are close to 𝑋(𝑖) 

within the threshold tolerance of ±𝑟.  

 

* Steps 3 and 4 are computed for all 𝑖, (𝑖 = 1, 𝑁 − 𝑚 + 1). 
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Step 5.    Take the natural logarithm of the ratio, 𝐶𝑟
𝑚(𝑖), and average it over 𝑖: 

 

𝛷𝑚(𝑟) =  
1

𝑁−𝑚+1
∑ ln 𝐶𝑟

𝑚(𝑖)𝑁−𝑚+1
𝑖=1   (3.11) 

 

𝛷𝑚(𝑟) represents the average frequency that all 𝑚-point patterns in the time series remain close 

to one another. 

 

Step 6.   Repeat steps 1-5 for m+1 

Step 7.  Compute 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) using equation 3.6:   𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =  𝛷𝑚(𝑟) −  𝛷𝑚+1(𝑟) 

 

The meaning of 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) for 𝑚 = 2 can be interpreted as the difference between 

the average frequency that all 2-point patterns in the time series remain close to one another and 

the average frequency that all 3-point patterns in the time series remain close to one another. 

This reveals the incidence of new pattern generation when the dimension 𝑚 decreases from 𝑚 =

3 to 𝑚 = 2 [26]. A larger value of 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) indicates a higher degree of new pattern 

generation and thus higher signal complexity. 

The maximum possible value of 𝐴𝑝𝐸𝑛 is defined by 𝑙𝑛 𝑘, where 𝑘 is the number base of 

the data sequence [20]. For example, in base 10, the maximum value of 𝐴𝑝𝐸𝑛 would be 𝑙𝑛 10 or 

~2.30. In theory, 𝐴𝑝𝐸𝑛 = 0 would indicate a perfectly predictable signal, while 𝐴𝑝𝐸𝑛 = ~2.30 

would indicate a completely random signal.  

Now that 𝐴𝑝𝐸𝑛 is well understood, a description of the 𝐶 − 𝐴𝑝𝐸𝑛 algorithm can be 

given. 𝐴𝑝𝐸𝑛 is an auto-comparison that reveals information about one signal’s complexity while 
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𝐶 − 𝐴𝑝𝐸𝑛 is a cross comparison that measures the complexity between two signals. 

Computation of 𝐶 − 𝐴𝑝𝐸𝑛 is easily derived from the steps used to calculate 𝐴𝑝𝐸𝑛. 

For two times series, 𝑥(𝑛) and 𝑦(𝑛), the length dimension 𝑚 and the threshold  𝑟 are 

kept the same, (𝑚 = 2) and (𝑟 = 0.2𝑆𝐷). However, in order for the threshold 𝑟 to be valid for 

both 𝑥(𝑛) and 𝑦(𝑛), the two time series must have the same standard deviation. This is achieved 

by normalizing 𝑥(𝑛) and 𝑦(𝑛): 

 

𝑥′(𝑛) =  
𝑥(𝑛)−𝑥(𝑛)̅̅ ̅̅ ̅̅ ̅

𝑆𝐷𝑥
  (3.12) 

𝑦′(𝑛) =  
𝑦(𝑛)−𝑦(𝑛)̅̅ ̅̅ ̅̅ ̅

𝑆𝐷𝑦
  (3.13) 

 

The remaining steps for computation of 𝐶 − 𝐴𝑝𝐸𝑛 are described below. 

Step 1.   Create two sets of  vectors of length 𝑚: 

 

𝑋(𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 1), … , 𝑥(𝑖 + 𝑚 − 1),       𝑖 = 1, 𝑁 − 𝑚 + 1  (3.14) 

𝑌(𝑗) = [𝑦(𝑗), 𝑦(𝑗 + 1), … , 𝑦(𝑗 + 𝑚 − 1),       𝑗 = 1, 𝑁 − 𝑚 + 1  (3.15) 

 

Step 2.   Define the distance between vectors as the absolute maximum difference between 𝑋(𝑖) 

and 𝑌(𝑗): 

 

𝑑[𝑋(𝑖)  𝑌(𝑗)] =  𝑚𝑎𝑥𝑘=0,𝑚−1[|𝑥(𝑖 + 𝑘) − 𝑦(𝑗 + 𝑘)|]  (3.16) 
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Step 3.  For a given 𝑋(𝑖), find the number of distances, 𝑑[𝑋(𝑖)  𝑌(𝑗)], (𝑗 = 1, 𝑁 − 𝑚 + 1) that 

are ≤ 𝑟: 

𝑁𝑥𝑦
𝑚 (𝑖) = # 𝑜𝑓 𝑑[𝑋(𝑖)  𝑌(𝑗)]  ≤ 𝑟  (3.17) 

 

The meaning of 𝑁𝑥𝑦
𝑚 (𝑖)  is then the total number of 𝑌(𝑗), (𝑗 = 1, 𝑁 − 𝑚 + 1) that are close to the 

𝑚-point pattern formed by 𝑋(𝑖) within the threshold tolerance of ±𝑟. 

 

Step 4.   Compute the ratio of 𝑁𝑥𝑦
𝑚 (𝑖)  to the total number of all 𝑚-point patterns, (𝑁 − 𝑚 + 1): 

 

𝐶𝑥𝑦
𝑚 (𝑖) =  

𝑁𝑥𝑦
𝑚 (𝑖)

𝑁−𝑚+1
  (3.18) 

 

The ratio, 𝐶𝑥𝑦
𝑚 (𝑖), defines the frequency of occurrence of the 𝑚-point 𝑦 patterns formed by 

𝑌(𝑗), (𝑗 = 1, 𝑁 − 𝑚 + 1)  being within the threshold tolerance of ±𝑟 to the 𝑚-point 𝑥 pattern of 

a given 𝑋(𝑖). 

 

* Steps 3 and 4 are repeated for all 𝑋(𝑖), (𝑖 = 1, 𝑁 − 𝑚 + 1).  

 

Step 5.    Take the natural logarithm of the ratio, 𝐶𝑥𝑦
𝑚 (𝑖), and average it over 𝑖: 

 

𝛷𝑥𝑦
𝑚 (𝑟) =  

1

𝑁−𝑚+1
∑ ln 𝐶𝑥𝑦

𝑚 (𝑖)𝑁−𝑚+1
𝑖=1   (3.19) 
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𝛷𝑥𝑦
𝑚 (𝑟) represents the average frequency that all 𝑚-point patterns in 𝑌(𝑗) remain close for all 𝑚-

point patterns in 𝑋(𝑖). 

 

Step 6.   Repeat steps 1-5 for m+1 

Step 7. Compute 𝐶 − 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁): 

 

𝐶 − 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =  𝛷𝑥𝑦
𝑚 (𝑟) −  𝛷𝑥𝑦

𝑚+1(𝑟)  (3.20) 

 

For 𝑚 =  2, the meaning of 𝐶 − 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) can be interpreted as the difference 

between the average frequency that all 2-point patterns in 𝑌(𝑗) remain close for all 2-point 

patterns in 𝑋(𝑖) and the average frequency that all 3-point patterns in 𝑌(𝑗) remain close for all 3-

point patterns in 𝑋(𝑖) [26]. Intuitively, this provides the rate of new pattern generation from 

dimension 𝑚 = 3 to 𝑚 = 2 and thus the cross complexity of the two time series signals 𝑥(𝑛) 

and 𝑦(𝑛). A larger value of 𝐶 − 𝐴𝑝𝐸𝑛 would indicate higher complexity between the two 

signals and thus lower connectivity. Because 𝐶 − 𝐴𝑝𝐸𝑛 is a directed measure, it also provides a 

way to assess how connectivity varies based on directionality. 

 A 𝐶 − 𝐴𝑝𝐸𝑛 algorithm was developed in MATLAB 2019a to evaluate neural 

connectivity between brain regions. The dimension 𝑚 was chosen as 2 and the threshold 𝑟 was 

chosen as 0.2𝑆𝐷. Each time series was normalized before computing 𝐶 − 𝐴𝑝𝐸𝑛. Region pairs 

were evaluated in both directions, i.e. 𝐶 − 𝐴𝑝𝐸𝑛 was computed for 20 cases per subject.  
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Appendix A. Subject Notes – EEG Interpretations 

 

 
Table A1. Subject Classification and EEG Interpretations 

 

 

 

Subject ID 

Epileptic or Control 

Group 

     0 =Control 

    1 = Epileptic                              

 

 

EEG Interpretation 

 

1 

 

0 

 

normal wakefulness, muscle artifact, eye movement artifact, photic 

stimulation with normal posterior driving response 

 
 

 

2 

 
 

 

0 

 

normal stage II sleep with a single, brief arousal (arousal- 

associated muscle artifact during the arousal); at other times in the 

record, the patient has temporal lobe slowing, but this slowing was 

not evident in this sleep sample. 

 

3 

 

0 

 

normal stage II sleep with minimal muscle artifact 

 

4 

 

0 

 

normal wakefulness with one brief psychogenic nonepileptic 

convulsive event with muscle and movement artifact 

 

5 

 

0 

normal stage II sleep with brief arousal (arousal-associated muscle 

artifact during the arousal). Has left temporoparietal slowing in 

wakefulness 

 

6 

 

0 
normal wakefulness with muscle artifact, photic stimulation, and 

hyperventilation 

 

7 

 

0 

 

wakefulness with left temporal slow waves, also muscle artifact 

 
8 

 
0 

 

normal wakefulness with psychogenic event and copious muscle artifact 

 

9 

 

0 normal wakefulness, photic stimulation, hyperventilation with 

prominent normal hyperventilation response 

 

 

10 

 

            1 

left temporal spike-wave and sharp and slow wave discharges; 

otherwise unremarkable wakefulness; [suspected left temporal    lobe 

epilepsy] 
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11 

 

 

    1 

 

normal wakefulness except for a brief burst of nonspecific, sharply-

contoured frontal theta; eyes open throughout; [poorly lateralized, 

poorly, poorly localized focal epilepsy] 

 

12 

 

     1 

 

stage II sleep, REM sleep, no epileptiform activity or other 

abnormality; [patient does have focal, extratemporal epilepsy] 

 

 

  13 

 

 

             1 

 

wakefulness and light drowsiness, largely unremarkable except for 

frequent left temporal slow waves and occasional left temporal 

sharp waves; [focal epilepsy of left hemispheric origin] 

 

14 

 

             1 

stage II sleep with right frontotemporal spikes and sharp waves as well 

as right anterior temporal slow waves; [right temporal lobe epilepsy] 

 

 

15 

 

 

             1 

stage II sleep with frequent interictal discharges (left 

centroparietal spikes and sharp waves > left anterior temporal sharp 

waves > left occipital spikes) and left > right hemispheric slow waves; 

[left temporoparietal epilepsy] 

 

 

16 

 

 

             1 

 

wakefulness with right greater than left temporal lobe slow 

waves, no epileptiform activity; [prior left temporal lobe 

epilepsy, rare seizures following left temporal lobe surgery] 

 

17 

 

             1 

 

stage II sleep, midline central spike-wave discharge; [focal 

epilepsy or right posterior quadrant origin] 

 

18 

 

             1 

 

stage II sleep, right hemispheric slowing; [independent right and left 

hemispheric focal seizures] 
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Appendix B. MSC Figures 

 

 
Figure B1. MSC Spectrograms between all region pairs: Subject 1 PNES 

 

 
Figure B2. MSC Spectrograms between all region pairs: Subject 2 PNES 
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Figure B3. MSC Spectrograms between all region pairs: Subject 3 PNES 

 

 
Figure B4. MSC Spectrograms between all region pairs: Subject 4 PNES 
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Figure B5. MSC Spectrograms between all region pairs: Subject 5 PNES 

 

 
Figure B6. MSC Spectrograms between all region pairs: Subject 6 PNES 
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Figure B7. MSC Spectrograms between all region pairs: Subject 7 PNES 

 

 
Figure B8. MSC Spectrograms between all region pairs: Subject 8 PNES 
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Figure B9. MSC Spectrograms between all region pairs: Subject 9 PNES 

 

 
Figure B10. MSC Spectrograms between all region pairs: Subject 10 ES 
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Figure B11. MSC Spectrograms between all region pairs: Subject 11 ES 

 

 
Figure B12. MSC Spectrograms between all region pairs: Subject  12 ES 
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Figure B13. MSC Spectrograms between all region pairs: Subject 13 ES 

 

 
Figure B14. MSC Spectrograms between all region pairs: Subject 14 ES 
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Figure B15. MSC Spectrograms between all region pairs: Subject 15 ES 

 

 
Figure B16. MSC Spectrograms between all region pairs: Subject 16 ES 
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Figure B17. MSC Spectrograms between all region pairs: Subject 17 ES 

 

 
Figure B18. MSC Spectrograms between all region pairs: Subject 18 ES 
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Appendix C.    Normality and Outliers 

 

 

C.1   Normality 

 

Table C.1.1. Results of the Shapiro-Wilk Test for normality of MSC in the Delta Band 

Delta Band: Tests of Normality 

PNES or ES 

Shapiro-Wilk 

Statistic Df Sig. 

MSC_FP PNES 0.902 9 0.263 

ES 0.855 9 0.085 

MSC_FT PNES 0.842 9 0.061 

ES 0.910 9 0.318 

MSC_FO PNES 0.859 9 0.093 

ES 0.867 9 0.114 

MSC_FC PNES 0.859 9 0.092 

ES 0.678 9 0.001 

MSC_PT PNES 0.728 9 0.003 

ES 0.962 9 0.817 

MSC_PO PNES 0.971 9 0.900 

ES 0.873 9 0.133 

MSC_PC PNES 0.892 9 0.209 

ES 0.848 9 0.070 

MSC_TO PNES 0.902 9 0.263 

ES 0.919 9 0.388 

MSC_TC PNES 0.858 9 0.092 

ES 0.908 9 0.300 

MSC_OC PNES 0.870 9 0.123 

ES 0.955 9 0.746 
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Table C.1.2. Results of the Shapiro-Wilk Test for normality of MSC in the Theta Band 

Theta Band: Tests of Normality 

PNES or ES 

Shapiro-Wilk 

Statistic df Sig. 

MSC_FP PNES 0.800 9 0.021 

ES 0.906 9 0.289 

MSC_FT PNES 0.852 9 0.078 

ES 0.907 9 0.298 

MSC_FO PNES 0.951 9 0.698 

ES 0.952 9 0.709 

MSC_FC PNES 0.874 9 0.135 

ES 0.886 9 0.183 

MSC_PT PNES 0.946 9 0.646 

ES 0.812 9 0.028 

MSC_PO PNES 0.949 9 0.682 

ES 0.950 9 0.695 

MSC_PC PNES 0.856 9 0.088 

ES 0.927 9 0.453 

MSC_TO PNES 0.955 9 0.750 

ES 0.808 9 0.025 

MSC_TC PNES 0.823 9 0.037 

ES 0.786 9 0.014 

MSC_OC PNES 0.954 9 0.738 

ES 0.956 9 0.752 
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Table C.1.3. Results of the Shapiro-Wilk Test for normality of MSC in the Alpha Band 

Alpha Band: Tests of Normality 

PNES or ES 

Shapiro-Wilk 

Statistic df Sig. 

MSC_FP PNES 0.905 9 0.279 

ES 0.948 9 0.663 

MSC_FT PNES 0.864 9 0.106 

ES 0.964 9 0.837 

MSC_FO PNES 0.961 9 0.813 

ES 0.977 9 0.947 

MSC_FC PNES 0.941 9 0.594 

ES 0.943 9 0.619 

MSC_PT PNES 0.919 9 0.385 

ES 0.948 9 0.664 

MSC_PO PNES 0.912 9 0.330 

ES 0.965 9 0.845 

MSC_PC PNES 0.954 9 0.730 

ES 0.850 9 0.074 

MSC_TO PNES 0.872 9 0.130 

ES 0.902 9 0.263 

MSC_TC PNES 0.846 9 0.067 

ES 0.950 9 0.692 

MSC_OC PNES 0.961 9 0.804 

ES 0.931 9 0.492 
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Table C.1.4. Results of the Shapiro-Wilk Test for normality of MSC in the Beta Band 

Beta Band: Tests of Normality 

PNES or ES 

Shapiro-Wilk 

Statistic df Sig. 

MSC_FP PNES 0.975 9 0.936 

ES 0.883 9 0.168 

MSC_FT PNES 0.922 9 0.406 

ES 0.851 9 0.077 

MSC_FO PNES 0.828 9 0.043 

ES 0.880 9 0.158 

MSC_FC PNES 0.708 9 0.002 

ES 0.694 9 0.001 

MSC_PT PNES 0.862 9 0.100 

ES 0.899 9 0.245 

MSC_PO PNES 0.955 9 0.749 

ES 0.962 9 0.821 

MSC_PC PNES 0.783 9 0.013 

ES 0.705 9 0.002 

MSC_TO PNES 0.853 9 0.081 

ES 0.795 9 0.018 

MSC_TC PNES 0.839 9 0.056 

ES 0.962 9 0.821 

MSC_OC PNES 0.932 9 0.497 

ES 0.923 9 0.420 

 

 

 

 

 

 

 



91 

 

Table C.1.5. Results of the Shapiro-Wilk Test for normality of MSC in the Gamma Band 

Gamma Band: Tests of Normality 

PNES or ES 

Shapiro-Wilk 

Statistic df Sig. 

MSC_FP PNES 0.767 9 0.008 

ES 0.947 9 0.658 

MSC_FT PNES 0.967 9 0.868 

ES 0.908 9 0.301 

MSC_FO PNES 0.979 9 0.961 

ES 0.914 9 0.344 

MSC_FC PNES 0.837 9 0.053 

ES 0.918 9 0.377 

MSC_PT PNES 0.871 9 0.125 

ES 0.930 9 0.479 

MSC_PO PNES 0.947 9 0.660 

ES 0.901 9 0.259 

MSC_PC PNES 0.886 9 0.180 

ES 0.899 9 0.244 

MSC_TO PNES 0.782 9 0.013 

ES 0.852 9 0.079 

MSC_TC PNES 0.958 9 0.775 

ES 0.882 9 0.166 

MSC_OC PNES 0.941 9 0.590 

ES 0.870 9 0.124 
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Table C.1.6. Results of the Shapiro-Wilk Test for normality of C-ApEn 

C-ApEn: Tests of Normality 

Group 

Shapiro-Wilk 

Group 

Shapiro-Wilk 

Statistic Df Sig. Statistic Df Sig. 

FP PNES 0.702 9 0.001 PO PNES 0.807 9 0.024 

ES 0.922 9 0.411 ES 0.971 9 0.905 

PF PNES 0.777 9 0.011 OP PNES 0.770 9 0.009 

ES 0.963 9 0.831 ES 0.978 9 0.953 

FT PNES 0.740 9 0.004 PC PNES 0.815 9 0.031 

ES 0.901 9 0.257 ES 0.946 9 0.643 

TF PNES 0.855 9 0.085 CP PNES 0.865 9 0.107 

ES 0.903 9 0.270 ES 0.924 9 0.426 

FO PNES 0.733 9 0.003 TO PNES 0.853 9 0.080 

ES 0.976 9 0.941 ES 0.942 9 0.605 

OF PNES 0.798 9 0.019 OT PNES 0.795 9 0.018 

ES 0.970 9 0.892 ES 0.957 9 0.763 

FC PNES 0.766 9 0.008 TC PNES 0.867 9 0.115 

ES 0.922 9 0.413 ES 0.890 9 0.200 

CF PNES 0.874 9 0.137 CT PNES 0.864 9 0.105 

ES 0.969 9 0.889 ES 0.924 9 0.423 

PT PNES 0.790 9 0.016 OC PNES 0.778 9 0.011 

ES 0.938 9 0.560 ES 0.971 9 0.907 

TP PNES 0.833 9 0.049 CO PNES 0.810 9 0.026 

ES 0.900 9 0.250 ES 0.916 9 0.363 
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Table C.1.7. Results of the Shapiro-Wilk Test for normality of C-ApEn: Subjects 8 and 13 

removed 

C-ApEn: Tests of Normality (Subjects 8 and 13 removed) 

Group 

Shapiro-Wilk 

Group 

Shapiro-Wilk 

Statistic Df Sig. Statistic Df Sig. 

FP PNES 0.950 8 0.710 PO PNES 0.823 8 0.051 

ES 0.945 8 0.661 ES 0.975 8 0.932 

PF PNES 0.918 8 0.414 OP PNES 0.719 8 0.004 

ES 0.962 8 0.824 ES 0.961 8 0.820 

FT PNES 0.908 8 0.339 PC PNES 0.893 8 0.251 

ES 0.916 8 0.398 ES 0.936 8 0.575 

TF PNES 0.899 8 0.283 CP PNES 0.846 8 0.087 

ES 0.884 8 0.205 ES 0.950 8 0.712 

FO PNES 0.803 8 0.031 TO PNES 0.827 8 0.055 

ES 0.980 8 0.961 ES 0.928 8 0.495 

OF PNES 0.757 8 0.010 OT PNES 0.796 8 0.026 

ES 0.965 8 0.852 ES 0.980 8 0.963 

FC PNES 0.947 8 0.684 TC PNES 0.886 8 0.214 

ES 0.921 8 0.439 ES 0.880 8 0.188 

CF PNES 0.859 8 0.118 CT PNES 0.843 8 0.081 

ES 0.984 8 0.981 ES 0.944 8 0.646 

PT PNES 0.881 8 0.191 OC PNES 0.771 8 0.014 

ES 0.929 8 0.508 ES 0.984 8 0.981 

TP PNES 0.858 8 0.114 CO PNES 0.762 8 0.011 

ES 0.884 8 0.207 ES 0.904 8 0.314 
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C.2   Outliers 

 

Table C.2.1. Presence of outliers for MSC results 

MSC: Outliers by Subject Number 

Group 
Delta 
MSC 

Theta 
MSC 

Alpha 
MSC 

Beta    
MSC 

Gamma 
MSC 

FP PNES 
1 1 x x 4 

ES 
13 13 x x X 

FT PNES 
4 4 4 x X 

ES 
X X x x X 

FO PNES 
X X x x X 

ES 
X X 14,15 x X 

FC PNES 
4 X x 8 8 

ES 
10 10 x 10 X 

PT PNES 
4 X x x X 

ES 
X X 13,15 x X 

PO PNES 
X 9 2,5,8,9 x X 

ES 
X X x x X 

PC PNES 
X X x 8 X 

ES 
10 X 10 10 X 

TO PNES 
4 7 x 6 X 

ES 
X 15 x x X 

TC PNES 
X X 2 x X 

ES 
X 10,11 11,14 x X 

CO PNES 
X X x x X 

ES 
X X x 18 X 
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Table C.2.2. Presence of outliers for C-ApEN results 

Cross Approximate Entropy 

Group 
Outliers by Subject 

Number Group 
Outliers by Subject 

Number 

FP PNES 
8 

PO PNES 
X 

ES 
X 

ES 
X 

PF PNES 
8 

OP PNES 
X 

ES 
X 

ES 
X 

FT PNES 
8 

PC PNES 
8 

ES 
X 

ES 
X 

TF PNES 
8 

CP PNES 
X 

ES 
X 

ES 
X 

FO PNES 
8 

TO PNES 
X 

ES 
X 

ES 
X 

OF PNES 
X 

OT PNES 
X 

ES 
13 

ES 
13 

FC PNES 
8 

TC PNES 
X 

ES 
X 

ES 
X 

CF PNES 
X 

CT PNES 
X 

ES 
X 

ES 
X 

PT PNES 
8 

OC PNES 
X 

ES 
X 

ES 
X 

TP PNES 
X 

CO PNES 
X 

ES 
X 

ES 
13,15,16 
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Table C.2.3. Presence of outliers for C-ApEN results: Subjects 8 and 13 removed 

Cross Approximate Entropy 

Group 
Outliers by Subject 

Number Group 
Outliers by Subject 

Number 

FP PNES 
X 

PO PNES 
X 

ES 
X 

ES 
X 

PF PNES 
X 

OP PNES 
X 

ES 
X 

ES 
X 

FT PNES 
X 

PC PNES 
X 

ES 
X 

ES 
X 

TF PNES 
X 

CP PNES 
X 

ES 
X 

ES 
X 

FO PNES 
X 

TO PNES 
X 

ES 
X 

ES 
X 

OF PNES 
X 

OT PNES 
X 

ES 
X 

ES 
X 

FC PNES 
X 

TC PNES 
X 

ES 
X 

ES 
X 

CF PNES 
X 

CT PNES 
X 

ES 
X 

ES 
X 

PT PNES 
X 

OC PNES 
X 

ES 
X 

ES 
X 

TP PNES 
X 

CO PNES 
X 

ES 
X 

ES 
15,16 
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Appendix D.   MATLAB Code 

 

 

Preprocessing and plotting of MSC results 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Title: MSC_lobes.m 
% Author: Sarah Barnes 
% Description: Imports subject EEG data, handles preprocessing, averages 
% signals into lobe regions, gets MSC between regions for each 
% subject, and plots MSC results.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%% Importing subject EEG data  
% Array to store path for each subject’s EEG data 
subjectPath = [<paths for subject data here>] 

  
% Array to store subject number strings 
subjectNum = [<Subject numbers, e.g. “Subject 1”>]; 

  
% storing all subject data 
for i = 1:length(subjectPath)     
    data = load(subjectPath(i));  
    EEG.Subject(i) = data; 
    data.Data = [];    
end 

  
%% Preallocation for each region pair field 
subject = struct('FP', cell(1, 18), 'FT', cell(1, 18),... 
 'FO', cell(1,18), 'FC', cell(1,18), 'PT', cell(1,18),... 
 'PO', cell(1,18), 'PC', cell(1,18), 'TO', cell(1,18),... 
 'TC', cell(1,18), 'OC', cell(1,18)); 

     
% This for loop iterates through each subject, pulls in the EEG data and  
% calculates MSC 
for s = 1:length(SubjectNum)      
    clear n; 
    EEG_data = []; 
    EEG_data = [EEG.Subject(s).Data]; 

  

  
    %% Signal preprocessing  
    % 60 Hz notch filter to remove mains interference 
    d = designfilt('bandstopiir','FilterOrder',2, ... 
               'HalfPowerFrequency1',59,'HalfPowerFrequency2',61, ... 
               'DesignMethod','butter','SampleRate',200); 

            
    % Application of notch filter to EEG signals 
    EEG_data = filtfilt(d,EEG_data); 

            
    % Application of reference average 
    EEG_data = EEG_data'; 
    EEG_data = (EEG_data-mean(EEG_data));  
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    % Channel info and sampling frequency 
    load('Channels.mat'); load('Fs.mat'); 

  
    %% Channel averaging to obtain on time series representing each region 
    % Frontal Region is shown for example, repeat for all regions 
    % Frontal lobe channels: Channel 1 = Fp1, Channel 2 = Fp2,  
    % Channel 3 = F3, Channel 4 = Fp4, Channel 11 = F7, Channel 12 = F8 

     
    frontal = EEG_data([1,2,3,4,11,12],:); 

     
    % Average of frontal lobe EEG signals 
    avgF = mean(frontal); 

  
    %% Parameters 
    Fs = 200; % Sampling frequency of EEG signals 
    nfft = 1200; % number of points for fft 
    M = 1200; % Window Length (6 second window) 
    L = 7; % Number of unique windows 
    H = 3.5; % Time half bandwidth 
    timeInc = 600; % Time increment (50% overlap) 
    f = 0:Fs/nfft:Fs/2-Fs/nfft; % frequency vector 
    n = (1:timeInc:length(EEG_data)-M)/Fs; % Time axis 

 
    %% Window creation using DPSS() 
    [dps, lambda] = dpss(M,H,L); % window length by window number 1000 X 7 
    dps = dps'; % 7 by 1000 (invert) 

     
    %% Getting MSC between each region pair.  
    % Frontal vs Parietal is shown as an example, repeat this step for  
    % each region pair of interest 
    % Calling the short term eigen transform function 
    X = steigen(avgF, dps, L, timeInc, nfft); % Frontal data  
    Y = steigen(avgP, dps, L, timeInc, nfft); % Parietal data 

     
    % Calculating MSC 
    FP_MSC = MSC(X,Y)'; % MSC between frontal and parietal 

     
    % Storing MSC results 
    subject(s).FP = FP_MSC(1:nfft/2, :); 

     
    % Plotting MSC Spectrograms 
    figure 
    set(gcf,'name',SubjectName(s),'numbertitle','off') 
    subplot(5,2,1) 
    imagesc(n, f, (FP_MSC(1:nfft/2, :))); view(0,-90); 
    xlabel('Time Segment (6s)'); ylabel('Frequency (Hz)');  
    title('MSC: Frontal vs Parietal'); 
    b = colorbar; % colorbar to show power/freq 
    ylabel(b, 'Power/freq (Watts/Hz)'); 

     
   clear temporal; clear parietal; clear occipital; clear frontal; 
   clear central; 
   X = []; Y = [];  
End 
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Short Term Minimum Bias Eigen Transform 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Title: steigen.m 
% Author: Sarah Barnes 
% Description: Computes short term minimum bias transform of input data x 

% See details below  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

function [transform] = steigen(x, V, L, ti, nfft) 
% [transform] = steigen(x, V, L, ti, nfft) 
% 
% This function will return an array containing the short term 
%   minimum bias eigen transform 
% 
% Inputs to the function  
% x: The input data vector 
% V: Array containing L windows 
% L = Number of window sequences 
% ti: Time increment: Evaluate X[n,k] at ti 
% nfft: Number of fft points 
% 
% Outputs to the function 
%  coherence: short term minimum bias eigen transform 
% 
% AUTHOR: S. Barnes 
% DATE: 11/21/2018 

  
% Input Argument Error check 
if(nargin < 1) 
    fprintf(1,'Please provide data. Type help steigen\n'); 
    return; 
end  

  
M = length(V); % window length 
N = length(x); % length of input data vector 

  
% Preallocation for X array 
X = zeros(length((M/2):ti:(N-M/2)) , nfft , L); 

  
% Computing the short term eigen trasform 
for l = 1:L % Step through each window sequence  
    i =0;  
    temp = zeros(length((M/2):ti:(N-M/2)) , nfft); 
    for m = (M/2):ti:(N-M/2)  
        i=i+1;  
        % Take fft of x*V  
        temp(i,:) = fft( x((m+1-M/2):(m+M/2)).*V(l, 1:M) ,nfft); 
    end 
    X(:,:,l) = temp; % Store X by window sequence 
end 

  
transform = X; % Store X in output 
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Magnitude Squared Coherence Calculation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Title: MSC.m 
% Author: Sarah Barnes 
% Description: Computes the magnitude squared coherence between two data  

% vectors. See details below  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

function [coherence, SXX, SYY, SXY] = MSC(X, Y) 
%  [coherence] = MSC(x, y) 
% 
% This function will return the Magnitude-Squared Coherence from two input 
% sets of data 
% 
% Inputs to the function  
% x: The first input data vector 
% y: The second input data vector 
% 
% Outputs to the function 
%  coherence: Magnitude Squared Coherence 
%  SXX: Power Spectrum of X 
%  SYY: Power Spectrum of Y 
%  SXY: Cross Power Spectrum of X and Y 
% 
% AUTHOR: S. Barnes 
% DATE: 11/21/2018 

  
% Input Argument Error check 
if(nargin < 1) 
    fprintf(1,'Please provide data. Type help MSC\n'); 
    return; 
end  

  
% Power Spectrums and MSC 
SXX = sum(abs(X).^2,3); 
SYY = sum(abs(Y).^2,3); 
SXY = abs(sum( (X.*conj(Y)) ,3)).^2;  
coherence = SXY./(SXX.*SYY); 

 

 

Cross Approximate Entropy 
* Refer to MSC preprocessing section for details on importing subject data and preprocessing (D.1) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Title: CApEn.m 
% Author: Sarah Barnes 
% Description: Computes the cross approximate entropy of two time series. 

% See details below. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function[crossApproximateEntropy]=xApEntropy(X,Y) 
% [crossApproximateEntropy] = xApEntropy(X,Y) 
% 
% This function will return the cross approximate entropy of two time 
% series x and y. 
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% 
% Inputs to the function  
% x,y: Input time series data, normalized (sd=1) 
% 
% Outputs to the function 
% crossApproximateEntropy: Cross approximate entropy for x and y 
% 
% AUTHOR: S. Barnes 
% DATE: 09/01/2019 

  
% Parameters 
N=length(X); % The length of the time series, x and y should be of the same 

length 
r = 0.2; % This is the threshold filter, typically 0.2*sd, since the data  
         % are normalized, it is just 0.2 
M = 2; % The embedded dimension 

  
for m = M:M+1 % evaluate at m = 2 and m = 3, to compare occurence of m  
              % point patterns to m+1 point patterns 
    C = zeros(1,N); 

     
    for i=1:(N-m+1) 
        x = X(i:i+m-1); 
        Nxy = 0; 
        for j=1:(N-m+1) 
            y = Y(j:j+m-1); 
            dif=(abs(x-y)<=r); 
            count = all(dif); 
            Nxy = Nxy + count;         
        end    
        C(i) = Nxy / (N-m+1); 
    end     
    logC = log(C); 
    logC(isinf(logC)) = []; 
    phi(m) = mean(logC); 
end 
crossApproximateEntropy = phi(2) - phi(3); 
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